专题57:第12章压轴题之开放探究类- 中考数学解题方法系统训练(全国通用)(解析版).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题57:第12章压轴题之开放探究类- 中考数学解题方法系统训练全国通用解析版 专题 57 12 压轴 开放 探究 中考 数学 解题 方法 系统 训练 全国 通用 解析
- 资源描述:
-
1、57第12章压轴题之开放探究类一、单选题1已知关于、的二元一次方程组给出下列结论:当时,此方程组无解;若此方程组的解也是方程的解,则;无论整数取何值,此方程组一定无整数解、均为整数),其中正确的是ABCD【答案】A【分析】根据二元一次方程组的解法逐个判断即可【解答】当时,方程组为,此时方程组无解结论正确由题意,解方程组得:把,代入得解得,则结论正确解方程组得:又为整数、不能均为整数结论正确综上,正确的结论是故选:A【点评】本题考查了二元一次方程组的解与解法,掌握二元一次方程组的解法是解题关键2“勾股图”有着悠久的历史,它曾引起很多人的兴趣1955年希腊发行了以“勾股图”为背景的邮票(如图1),
2、欧几里得在几何原本中曾对该图做了深入研究如图2,在中,分别以的三条边为边向外作正方形,连结,分别与,相交于点,若,则的值为( ) ABCD【答案】D【分析】先用已知条件利用SAS的三角形全等的判定定理证出EABCAM,之后利用全等三角形的性质定理分别可得,然后设,继而可分别求出,所以;易证RtACBRtDCG(HL),从而得,然后代入所求数据即可得的值【解答】解:在EAB和CAM中 ,EABCAM(SAS),,设,则,; 在RtACB和RtDCG中,RtACBRtDCG(HL),;故选D【点评】本题主要考查了勾股定理,三角形全等的判定定理和性质定理等知识3如图,设正方体ABCD-A1B1C1D
3、1的棱长为1,黑、白两个甲壳虫同时从点A出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA1A1D1,白甲壳虫爬行的路线是ABBB1,并且都遵循如下规则:所爬行的第n+2与第n条棱所在的直线必须既不平行也不相交(其中n是正整数)那么当黑、白两个甲壳虫各爬行完第2017条棱分别停止在所到的正方体顶点处时,它们之间的距离是( )A0B1CD【答案】D【分析】先确定黑、白两个甲壳虫各爬行完第2017条棱分别停止的点,再根据停止点确定它们之间的距离【解答】根据题意可知黑甲壳虫爬行一圈的路线是AA1A1D1D1C1C1CCBBA,回到起点乙甲壳虫爬行一圈的路线是ABBB1B1C1C1D1D1A
4、1A1A因此可以判断两个甲壳虫爬行一圈都是6条棱,因为20176=3361,所以黑、白两个甲壳虫各爬行完第2017条棱分别停止的点都是A1,B.所以它们之间的距离是,故选D【点评】此题考查了立体图形的有关知识注意找到规律:黑、白甲壳虫每爬行6条边后又重复原来的路径是解此题的关键4在平面上,边长为的正方形和短边长为的矩形几何中心重合,如图,当正方形和矩形都水平放置时,容易求出重叠面积甲、乙、丙三位同学分别给出了两个图形不同的重叠方式; 甲:矩形绕着几何中心旋转,从图到图的过程中,重叠面积大小不变乙:如图,矩形绕着几何中心继续旋转,矩形的两条长边与正方形的对角线平行时,此时的重叠面积大于图的重叠面
5、积丙:如图,将图中的矩形向左上方平移,使矩形的一条长边恰好经过正方形的对角线,此时的重叠面积是个图形中最小的下列说法正确的是( )A甲、乙、丙都对B只有乙对C只有甲不对D甲、乙、丙都不对【答案】C【分析】本题重叠部分面积需要结合图形特点,利用对称性质,通过假设未知数表示未知线段,利用面积公式求解,并根据线段范围判别面积大小【解答】如图一所示,设AI=x,BJ=y,则有x+y=AB-IJ=2-1=1,重叠部分四边形JILK面积为2如图二所示,设AI=x,BJ=y,因为JM=HE=1,JIM为直角三角形,斜边JI大于直角边JM,故有:x+y1,重叠部分平行四边形JILK面积为如图三所示,设AI=x
6、(0x1),BJ=y=0,重叠部分四边形JIDK面积为在由图一到图三的转变过程中,x+y的取值逐渐减小,则重叠部分面积逐渐增大,故甲同学说法错误如图四所示,设AI=AN=x(1x2),重叠部分多边形BINDKM面积为当0x2时, ,所以图四重叠部分的面积大于图三重叠部分面积,乙同学说法正确如图五所示,设AI=AN=x,所以重叠部分四边形INDB面积为,因为,所以重叠部分面积小于2,即小于图一重叠面积综上,图一到图四重叠部分面积逐渐增大,图五面积小于图一,故图五面积最小,丙同学说法正确故答案为C选项【点评】本题考查正方形以及矩形性质,并在此基础进行知识延伸,需要假设未知数并结合对称性质化抽象问题
7、为形象问题,利用未知量取值范围求解本题二、填空题5(1)如图,五角形的顶点分别为A、B、C、D、E,A+B+C+D+E=_(2)如图,A+DBE+C+D+E=_(3)如图,A+B+C+D+E=_(4)如图,123456_【答案】 【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和可得A+C=B+D=,然后利用三角形的内角和定理列式即可得解;(2)根据三角形的一个外角等于与它不相邻的两个内角的和可得A+D=,在BCE中,利用三角形的内角和列式计算即可得解;(3)根据三角形的一个外角等于与它不相邻的两个内角的和可得A+C=,B+,然后利用三角形的内角和定理列式即可得解;(4)如图,连接
8、,由三角形的内角和定理可得:,再由四边形的内角和定理可得答案【解答】解:(1)如图,标注字母,由三角形的外角性质,A+C=B+D=, A+B+C+D+E=180;故答案为: (2)如图,由三角形的外角性质,A+D=, , A+DBE+C+D+E=180;故答案为: (3)如图,由三角形的外角性质, 故答案为: (4)如图,标注字母,连接,由三角形的内角和定理可得:,由四边形的内角和定理可得:, 故答案为:【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形内角和定理,四边形的内角和定理,解题的关键在于准确识图,理清图中各角度之间的联系与转化6在平面直角坐标系中,点A(0
9、,4),B(-2,0),C(a,-a),ABC的面积小于10,则a的取值范围是_【答案】且【分析】根据A、B坐标,利用待定系数法可求出直线AB的解析式,根据点C坐标可得点C在直线y=-x上,即在直线OC上,联立AB、OC解析式可得交点坐标,分a=0,a0,a0、a四种情况,画出图形,分别用a表示出ABC的面积,根据ABC的面积小于10列不等式求出a的取值范围即可得答案【解答】设直线AB的解析式为y=kx+b,A(0,4),B(-2,0),OA=4,OB=2,点A、B在直线AB上,解得:,直线AB的解析式为y=2x+4,当a=0时,点C(0,0),与原点重合,SABC=OAOB=410,a=0符
10、合题意,如图,当a0时,点C(a,-a)在第四象限,连接OC,SABC=SABO+SAOC+SBOC=24+4a+2a=4+3a,ABC的面积小于10,4+3a10,解得a2,0a2,点C(a,-a),点C在直线y=-x上,即在直线OC上,联立直线AB与直线OC的解析式得,解得:,直线AB与直线OC的交点坐标为(,),a,如图,当a0时,点C在ABO的内部,SABCSABO10,a0符合题意,如图,当a时,点C(a,-a)在第二象限,且在ABO的外部,连接OC,SABC=SAOC+SBOC-SABO=4(-a)+2(-a)-24=3a-4,ABC的面积小于10,-3a-410,解得:a,a,综
11、上所述:a的取值范围是a2,且a故答案为:a2,且a【点评】本题考查一次函数的交点问题及三角形的面积,熟练掌握待定系数法求一次函数解析式、利用图形正确表示出ABC的面积并灵活运用分类讨论的思想是解题关键7如图,点的坐标为,过点作轴于点,轴于点,点为线段上一点,若第一象限内存在点,使为等腰直角三角形,请直接写出符合条件的点坐标_【答案】或或或【分析】分点N为直角顶点、点E为直角顶点、点M为直角顶点三种情况,再分别利用矩形的判定与性质、直角三角形的性质、三角形全等的判定定理与性质求解即可得【解答】轴,轴,四边形OEDF是矩形,点的坐标为,由题意,分以下三种情况:(1)当点N为直角顶点时,如图,点N
12、在EM的下方,过点N作,于G,GN的延长线交DF于H,则四边形GEDH是矩形,为等腰直角三角形,在和中,解得,则此时点N的坐标为;如图,点N在EM的上方,过点N作于G,GN的延长线交FD的延长线于H,同理可得:,解得,则此时点N的坐标为;(2)当点E为直角顶点时,如图,过点N作于G,过点M作于H,则四边形HEDM是矩形,同理可得:,解得,则此时点N的坐标为;(3)当点M为直角顶点时,如图,过点M作于G,过点N作,交GM延长线于H,则四边形GEDM是矩形,同理可得:,解得,则此时点N的坐标为;综上,符合条件的点坐标为或或或,故答案为:或或或【点评】本题考查了矩形的判定与性质、三角形全等的判定与性
13、质、等腰直角三角形的性质等知识点,正确分三种情况讨论,并画出图形,通过作辅助线,构造全等三角形是解题关键8如图,在RtABC中,ACB90,AC4,BC6,点D是边BC的中点,点E是边AB上的任意一点(点E不与点B重合),沿DE翻折DBE,使点B落在点F处,连接AF,则当线段AF的长取最小值时,sinFBD是_【答案】【分析】先确定取最小值的情况,画出相应的图形,并求得,再通过添加辅助线“连接,过作于”构造出直角三角形,最后根据相似三角形的判定和性质、勾股定理以及锐角三角函数即可求得答案【解答】解:由题意得,点在以为圆心、为半径的圆上,作,连接交于点,此时的值最小,如图:点是的中点连接,过作于
14、,如图:,故答案是:【点评】本题考查了几何图形中求最值问题、相似三角形的判定和性质、勾股定理以及锐角三角函数等知识点,能根据题意画出相应图形并构造出直角三角形是解决问题的关键三、解答题9定义:到三角形的两个顶点距离相等的点,叫做三角形的“中垂心”如图1,在ABC中,PA=PB,则点P叫做ABC的“中垂心”(1)根据定义,中垂心可能在三角形顶点处的三角形有_(举一个例子即可);(2)应用:如图2;在ABC中,请画出“中垂心”P,使PA=PB=PC(保留作图痕迹,不写画法)(3)探究:如图3,已知ABC为直角三角形,C=90,ABC=60,AC=,“中垂心”P在AC边上,求PA的长如图4,若PA=
15、PB且“中垂心”P在ABC内部,总有AC+BC2AP,请说明理由【答案】(1)等腰三角形(答案不唯一);(2)图见解析;(3)PA=或;理由见解析【分析】(1)根据“中垂心”的定义即可得出结论;(2)根据题意,分别作出BC和AB的垂直平分线,交于点P即可;(3)根据30所对的直角边是斜边的一半和勾股定理即可求出BC和AB,然后根据“中垂心”的定义分类讨论,分别画出对应的图形,利用勾股定理和中点的定义即可分别求出结论;延长AP交BC于D,根据三角形的三边关系和不等式的基本性质即可证出结论【解答】解:(1)根据题意,若点C为ABC的“中垂心”可得CA=CBABC为等腰三角形故答案为:等腰三角形(答
16、案不唯一);(2)分别作出BC和AB的垂直平分线,交于点P根据垂直平分线的性质可得PA=PB=PC点P即为所求;(3)C=90,ABC=60,A=90ABC=30AB=2BC设BC=x,则AB=2xBC2AC2=AB2x2()2=(2x)2解得:x=4或-4(不符合实际,舍去)BC=4,AB=8P在AC边上,C=90PBPC,即不存在“中垂心”P,使PB=PC若PA=PB,如下图所示设PA=PB=a,则PC=ACPA=aPC2BC2=BP2(a)242=a2解得:a=即PA=;若PA=PC,如下图所示则点P为AC的中点PA=综上:PA=或;理由如下延长AP交BC于D根据三角形的三边关系可得:A
17、CCDAD,DPDBPBACCDDPDBADPBAC(CDDB)DPPADPPBACBCPAPBPA=PBAC+BC2AP【点评】此题考查的是线段垂直平分线的性质、直角三角形的性质和三角形三边关系的应用,掌握线段垂直平分线的性质、30所对的直角边是斜边的一半、勾股定理和三角形的三边关系是解题关键10如图,在中,为的中点,将绕点顺时针旋转得到,连结、.(1)若为等边三角形,试探究与有何数量关系?证明你的结论;(2)若为等边三角形,当的值为多少时,?(3)当不是等边三角形时,(1)中结论是否仍然成立?若不成立,请添加一个条件,使得结论成立,并说明理由.【答案】(1),证明见解析;(2)或240;(
18、3)不成立,理由见解析;【解析】【分析】1)、(2)可根据旋转的性质、等边三角形的性质、全等三角形的判定与性质证得结论及求得的值;(3)根据(1)中的结论,运用等腰三角形“三线合一”的性质,从整体图形或关键角度入手,便可得到需要添加的条件.【解答】解 (1),证明如下:为等边的中线,即,即,由旋转的性质得到,.(2)或240.当时,由为等边三角形,得到,;当时,.(3)不成立,添加的条件为理由如下:,即.,即.由旋转的性质得到,.【点评】本题考查旋转的性质、等边三角形的性质、全等三角形的判定与性质等诸多知识及观察、分析、猜想与推理等能力, (1)、(2)由于对旋转的性质、等边三角形的性质、全等
19、三角形的判定与性质掌握不牢,导致不能证得结论或求不出的值;问题(3)由于缺乏观察、分析与推理等能力,以致解答时无从下手,所添加的条件重复或不完全,出现诸如“”、“且”等错误答案.11如图,以点为旋转中心,将线段按顺时针方向旋转得到线段,连结(1)比较与的大小,并说明理由(2)当时,若,请你编制一个计算题(不标注新的字母),并解答【答案】(1),理由见解析;(2)不唯一,举例见解析【分析】(1)根据旋转的性质可以得到,由此可以分别求出和,即可求解;(2)此题属于开放性试题,结合旋转的性质自行编制即可;【解答】解:(1),理由如下;线段绕点按顺时针方向旋转得线段(2)不唯一,举例如下:层次一:利用
20、其中一个条件求简单元素,并解答正确如:求,层次二:利用其中一个条件求比较复杂的元素,要利用到一些公式或三角函数,并解答正确如:求求弧长,弧的长求层次三:利用两个条件求复杂元素,并解答正确,如:求线段扫过的面积为【点评】本题主要考查旋转图形的性质,熟练掌握旋转图形的性质以及旋转轨迹是求解本题的关键.12问题呈现:已知等边三角形边的中点为点,的两边分别交直线,于点,现要探究线段,与等边三角形的边长之间的数量关系(1)特例研究:如图1,当点,分别在线段,上,且,时,请直接写出线段,与的数量关系:_;(2)问题解决:如图2,当点落在射线上,点落在线段上时,(1)中的结论是否成立?若不成立,请通过证明探
21、究出线段,与等边三角形的边长之间的数量关系;(3)拓展应用:如图3,当点落在射线上,点落在射线上时,若,请直接写出的长和此时的面积【答案】(1);(2)不成立,理由见解析;(3),【分析】(1)根据等边三角形的性质可得每一个内角都是,则可知BDE与CDF是含角的直角三角形,根据角所对直角边是斜边的一半即可得到结果;(2)根据题意可证得,得到,进而求出,得到,在中,即(3)过点作,可求得,根据顶角为的等腰三角形面积的算法可求出的面积,【解答】(1)ABC是等边三角形,又,, (2)不成立理由如下:如图1,分别过点作于点,于点,易证得,则,则,即在中,即(3),解法提示:如图2,过点作,可求得同(
22、2)可证,可求得在中可求出,根据顶角为的等腰三角形面积的算法可求出的面积为【点评】本题主要考查了三角形的综合应用,准确理解三角形全等判定与性质、直角三角形的性质是解题的关键13综合与实践问题情境从“特殊到一般”是数学探究的常用方法之,类比特殊图形中的数量关系和探究方法可以发现一般图形具有的普遍规律如图1,在中,为边上的中线,为上一点,将以点为旋转中心,逆时针旋转90得到,的延长线交线段于点探究线段,之间的数量关系数学思考(1)请你在图1中证明;特例探究(2)如图2,当垂直于时,求证:;类比再探(3)请判断(2)的结论在图1中是否仍然成立?若成立,请证明;若不成立,请说明理由【答案】(1)见解析
23、;(2)见解析;(3)成立证明见解析【分析】(1)根据旋转图形的性质,可得AECBFC,得到FBC=EAC,再由三角形内角和证明APBE即可(2)先证明四边形CEPF是正方形,得到CE=FP,再证明CEDBPD,可得CE=BP,则问题可证(3)过点C作CGAD,垂足为G,CHBP,垂足为H,则按照(1)中方法问题证【解答】(1)证明:根据旋转图形的性质,可得AECBFC,FBC=EAC 又ADC=BDP,EAC+ADC=180-ACD=90,BDP+FBC=90,BPD=180-(BDP+FBC)=90,APBE (2)证明:CEP=EPF=ECF=90,四边形CEPF是矩形CE=CF 四边形
24、CEPF是正方形CE=EP=FP 又CDE=BDP,CD=BD,CED=BPD=90CEDBPD, CE=BPEP+FP=2CE=2BP (3)成立理由如下:过点C作CGAD,垂足为G,CHBP,垂足为HBFC由AEC逆时针90旋转得到,AEC=BFC,CE=CF,ECF=90 CEG+AEC=180,CFH+BFC=180,CEG=CFHCGE=CHF=90,CEGCFH, CH=CG,EG=FH EP+FP=GP+HPCGP=GPH=H=90,四边形CGPH是正方形 又(2)可知,GP+PH=2BP,EP+PF=2BP【点评】本题考查了利用图形旋转证明三角形全等以及正方形的性质和判定,解答
25、关键是应用由特殊到一般思想,通过类比方法证明问题14在ABC中,AB=AC,点D与点E分别在AB、AC边上,DEBC,且DE=DB,点F与点G分别在BC、AC边上,FDGBDE(1)如图1,若BDE=120,DFBC,点G与点C重合,BF=1,直接写出BC= ;(2)如图2,当G在线段EC上时,探究线段BF、EG、FG的数量关系,并给予证明;(3)如图3,当G在线段AE上时,直接写出线段BF、EG、FG的数量关系:_【答案】(1)4;(2)FG=BF+EG,见解析;(3)FG=BF-EG【分析】(1)解直角三角形分别求出DF,CF即可解决问题(2)如图2中,结论:FG=BF+EG在EA上截取E
26、H,使得EH=BF利用两次全等,证明FG=GH即可解决问题(3)如图3中,结论:FG=BF-EG在射线EA上截取EH,使得EH=BF利用两次全等,证明FG=GH即可解决问题【解答】(1)DEBC,BDE+ABC=180,BDE=120,ABC=60,DFBF,BFD=90,DF=BFtan60,CDFBDE=60,DFC=90,CF=DFtan60,BC=BF+CF=1+3=4;(2)如图2中,结论:FG=BF+EG理由:在EA上截取EH,使得EH=BFAB=AC,B=C,DEBC,ADE=B,AED=C,ADE=AED,DEH=B, 在DBF和DEH中,DBFDEH(SAS),DF=DH,B
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-514638.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
