《原创》2014-2015学年高三数学午间小练 37.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 原创 原创2014-2015学年高三数学午间小练 37 2014 2015 学年 数学 午间
- 资源描述:
-
2014届高三数学午间小练三十九Read If 1. 若,且为纯虚数,则实数 . 2如右图,给出一个算法的伪代码,则 . 3.等腰中,斜边,一个椭圆以C为其中一个焦点,另一个焦点在线段AB上,且椭圆经过A,B两点,则该椭圆的离心率为 .4.高三(1)班共有56人,学号依次为1,2,3,56,现用系统抽样的办法抽取一个容量为4的样本,已知学号为6,34,48的同学在样本中,那么还有一个同学的学号应为 .5 设是球表面上的四个点,两两垂直,则球的体积为 .6 已知函数是奇函数且,则的取值范围是 .7中,设是的内心,若,则 的值为 .8若对任意,总存在,使得则的取值范围是 .9.已知数列中,前和求证:数列是等差数列 求数列的通项公式设数列的前项和为,是否存在实数,使得对一切正整数都成立?若存在,求的最小值,若不存在,试说明理由。
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
