2022年新教材高考数学一轮复习 规范答题增分专项4 高考中的立体几何(含解析)新人教版.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年新教材高考数学一轮复习 规范答题增分专项4 高考中的立体几何含解析新人教版 2022 新教材 高考 数学 一轮 复习 规范 答题 专项 中的 立体几何 解析 新人
- 资源描述:
-
1、规范答题增分专项四高考中的立体几何1.如图,在平行四边形ABCM中,AB=AC=3,ACM=90.以AC为折痕将ACM折起,使点M到达点D的位置,且ABDA.(1)证明:平面ACD平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=23DA,求三棱锥Q-ABP的体积.2.(2020全国,理18)如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为底面直径,AE=AD.ABC是底面的内接正三角形,P为DO上一点,PO=66DO.(1)证明:PA平面PBC;(2)求二面角B-PC-E的余弦值.3.如图,已知多面体ABC-A1B1C1,A1A,B1B,C1C均垂直于平面ABC,ABC
2、=120,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1平面A1B1C1;(2)求直线AC1与平面ABB1所成角的正弦值.4.(2020山东,20)如图,四棱锥P-ABCD的底面为正方形,PD底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.5.图是由矩形ADEB,RtABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,FBC=60.将其沿AB,BC折起使得BE与BF重合,连接DG,如图.(1)证明:图中的A,C,G,D四点共面,且平面ABC平面BC
3、GE;(2)求图中的二面角B-CG-A的大小.6.(2020全国,理20)如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1MN,且平面A1AMN平面EB1C1F;(2)设O为A1B1C1的中心,若AO平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.7.如图,在四棱柱ABCD-A1B1C1D1中,侧棱A1A底面ABCD,ABAC,AB=1,AC=AA1=2,AD=CD=5,且点M和N分别为B1C和D1D的中点.(1)求证:MN平
4、面ABCD;(2)求二面角D1-AC-B1的正弦值;(3)设E为棱A1B1上的点,若直线NE和平面ABCD所成角的正弦值为13,求线段A1E的长.8.如图,在四棱锥P-ABCD中,ADBC,ADC=PAB=90,BC=CD=12AD,E为棱AD的中点,异面直线PA与CD所成的角为90.(1)在平面PAB内找一点M,使得直线CM平面PBE,并说明理由;(2)若二面角P-CD-A的大小为45,求直线PA与平面PCE所成角的正弦值.规范答题增分专项四高考中的立体几何1.(1)证明由已知可得BAC=90,BAAC.又BAAD,所以AB平面ACD.又AB平面ABC,所以平面ACD平面ABC.(2)解由已
5、知可得DC=CM=AB=3,DA=32.又BP=DQ=23DA,所以BP=22.如图,作QEAC,垂足为E,则QE13DC.由已知及(1)可得DC平面ABC,所以QE平面ABC,QE=1.因此三棱锥Q-APB的体积为VQ-ABP=13QESABP=13112322sin45=1.2.(1)证明设DO=a,由题设可得PO=66a,AO=33a,AB=a,PA=PB=PC=22a,因此PA2+PB2=AB2,从而PAPB.又PA2+PC2=AC2,故PAPC.所以PA平面PBC.(2)解以O为坐标原点,OE的方向为y轴正方向,|OE|为单位长,建立如图所示的空间直角坐标系Oxy
6、z.由题设可得点E(0,1,0),A(0,-1,0),C-32,12,0,P0,0,22.所以EC=-32,-12,0,EP=0,-1,22.设m=(x,y,z)是平面PCE的法向量,则mEP=0,mEC=0,即-y+22z=0,-32x-12y=0.可取m=-33,1,2.由(1)知AP=0,1,22是平面PCB的一个法向量,记n=AP,则cos=nm|n|m|=255.所以二面角B-PC-E的余弦值为255.3.解法一(1)证明:因为A1A,B1B,C1C均垂直于平面ABC,所以A1AB1B,B1BC1C,A1AC1C.由AB=2,AA1=4,BB1=2,AA1AB,BB1AB,得AB1=
7、A1B1=22,所以A1B12+AB12=AA12,故AB1A1B1.由BC=2,BB1=2,CC1=1,BB1BC,CC1BC,得B1C1=5.由AB=BC=2,ABC=120,得AC=23.由CC1AC,得AC1=13.所以AB12+B1C12=AC12,故AB1B1C1.因此AB1平面A1B1C1.(2)如图,过点C1作C1DA1B1,交直线A1B1于点D,连接AD.由(1)知AB1平面A1B1C1,所以平面A1B1C1平面ABB1,且交线为A1B1.所以C1D平面ABB1.所以C1AD是AC1与平面ABB1所成的角.由B1C1=5,A1B1=22,A1C1=21,得cosC1A1B1=
8、67,从而sinC1A1B1=17.所以C1D=3,故sinC1AD=C1DAC1=3913.因此直线AC1与平面ABB1所成的角的正弦值是3913.解法二(1)证明:如图,以AC的中点O为原点,分别以射线OB,OC为x轴、y轴的正半轴,建立空间直角坐标系Oxyz.由题意知各点坐标如下:A(0,-3,0),B(1,0,0),A1(0,-3,4),B1(1,0,2),C1(0,3,1).因此AB1=(1,3,2),A1B1=(1,3,-2),A1C1=(0,23,-3).由AB1A1B1=0,得AB1A1B1.由AB1A1C1=0,得AB1A1C1.所以AB1平面A1B1C1.(2)设直线AC1
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-514841.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
