《原创作品》2013年普通高考数学科一轮复习精品学案 第12讲 空间中的夹角和距离.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 原创作品 原创作品2013年普通高考数学科一轮复习精品学案 第12讲 空间中的夹角和距离 原创 作品 2013 普通 高考 数学科 一轮 复习 精品 12 空间 中的 夹角 距离
- 资源描述:
-
1、2013年普通高考数学科一轮复习精品学案第12讲 空间中的夹角和距离一课标要求:1掌握两条直线所成的角和距离的概念及等角定理;(对于异面直线的距离,只要求会计算已给出公垂线时的距离)。2掌握点、直线到平面的距离,直线和平面所成的角;3掌握平行平面间的距离,会求二面角及其平面角;二命题走向高考立体几何试题一般共有4道(选择、填空题3道, 解答题1道), 共计总分27分左右,考查的知识点在20个以内。随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展,从历年的考题变化看, 以多面体和旋转体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。预测2013年高
2、考试题:(1)单独求夹角和距离的题目多为选择题、填空题,分值大约5分左右;解答题中的分步设问中一定有求夹角、距离的问题,分值为6分左右;(2)选择、填空题考核立几中的计算型问题, 而解答题着重考查立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提。三要点精讲1距离空间中的距离是立体几何的重要内容,其内容主要包括:点点距,点线距,点面距,线线距,线面距,面面距。其中重点是点点距、点线距、点面距以及两异面直线间的距离因此,掌握点、线、面之间距离的概念,理解距离的垂直性和最近性,理解距离都指相应线段的长度,懂得几种距离之间的转化关系,所有这些都是十分重要的。求距离的重点在点到平面的距离
3、,直线到平面的距离和两个平面的距离可以转化成点到平面的距离,一个点到平面的距离也可以转化成另外一个点到这个平面的距离。(1)两条异面直线的距离两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离;求法:如果知道两条异面直线的公垂线,那么就转化成求公垂线段的长度。(2)点到平面的距离平面外一点P 在该平面上的射影为P,则线段PP的长度就是点到平面的距离;求法:“一找二证三求”,三步都必须要清楚地写出来。等体积法。(3)直线与平面的距离:一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离;(4)平行平面间的距离:两个平行平面的公垂线段的长度,叫做
4、两个平行平面的距离。求距离的一般方法和步骤:应用各种距离之间的转化关系和“平行移动”的思想方法,把所求的距离转化为点点距、点线距或点面距求之,其一般步骤是:找出或作出表示有关距离的线段;证明它符合定义;归到解某个三角形若表示距离的线段不容易找出或作出,可用体积等积法计算求之。异面直线上两点间距离公式,如果两条异面直线a 、b 所成的角为q ,它们的公垂线AA的长度为d ,在a 上有线段AE m ,b 上有线段AF n ,那么EF (“”符号由实际情况选定)2夹角空间中的各种角包括异面直线所成的角,直线与平面所成的角和二面角,要理解各种角的概念定义和取值范围,其范围依次为0,90、0,90和0,
5、180。(1)两条异面直线所成的角求法:先通过其中一条直线或者两条直线的平移,找出这两条异面直线所成的角,然后通过解三角形去求得;通过两条异面直线的方向量所成的角来求得,但是注意到异面直线所成角得范围是,向量所成的角范围是,如果求出的是钝角,要注意转化成相应的锐角。(2)直线和平面所成的角求法:“一找二证三求”,三步都必须要清楚地写出来。除特殊位置外,主要是指平面的斜线与平面所成的角,根据定义采用“射影转化法”。(3)二面角的度量是通过其平面角来实现的解决二面角的问题往往是从作出其平面角的图形入手,所以作二面角的平面角就成为解题的关键。通常的作法有:()定义法;()利用三垂线定理或逆定理;()
6、自空间一点作棱垂直的垂面,截二面角得两条射线所成的角,俗称垂面法此外,当作二面角的平面角有困难时,可用射影面积法解之,cos q ,其中S 为斜面面积,S为射影面积,q 为斜面与射影面所成的二面角。3等角定理如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等。推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等。四典例解析题型1:直线间的距离问题例1已知正方体的棱长为1,求直线DA与AC的距离。 解法1:如图1连结AC,则AC面ACD,连结DA、DC、DO,过O作OEDO于E因为AC面BBDD,所以ACOE。又ODOE,所以OE面ACD。
7、 因此OE为直线DA与AC的距离。在RtOOD中,可求得点评:此题是异面直线的距离问题:可作出异面直线的公垂线。图2 解法2:如图2连接AC、DC、BC、ABA,得到分别包含DA和AC的两个平面ACD和平面ABC, 又因为ACAC,ADBC,所以面ACD面ABC。 故DA与AC的距离就是平面ACD和平面ABC的距离,连BD分别交两平面于两点,易证是两平行平面距离。 不难算出,所以,所以异面直线BD与之间的距离为。点评:若考虑到异面直线的公垂线不易做出,可分别过两异面直线作两平面互相平行,则异面直线的距离就是两平面的距离。题型2:线线夹角例2如图1,在三棱锥SABC中,求异面直线SC与AB所成角
8、的余弦值。图1 解法1:用公式 当直线平面,AB与所成的角为,l是内的一条直线,l与AB在内的射影所成的角为,则异面直线l与AB所成的角满足。以此为据求解。 由题意,知平面ABC,由三垂线定理,知,所以平面SAC。 因为,由勾股定理,得 。 在中,在中,。 设SC与AB所成角为,则, 解法2:平移过点C作CD/BA,过点A作BC的平行线交CD于D,连结SD,则是异面直线SC与AB所成的角,如图2。又四边形ABCD是平行四边形。由勾股定理,得:。图2在中,由余弦定理,得:。点评:若不垂直,可经过如下几个步骤求解:(1)恰当选点,作两条异面直线的平行线,构造平面角;(2)证明这个角(或其补角)就是
9、异面直线所成角;(3)解三角形(常用余弦定理),求出所构造角的度数。题型3:点线距离例3正方形ABCD的边长是2,E、F分别是AB和CD的中点,将正方形沿EF折成直二面角(如图所示).M为矩形AEFD内一点,如果MBE=MBC,MB和平面BCF所成角的正切值为,那么点M到直线EF的距离为 。解析:过M作MOEF,交EF于O,则MO平面BCFE.如图所示,作ONBC,设OM=x,图又tanMBO=,BO=2x又SMBE=BEMBsinMBE=BEMESMBC=BCMBsinMBC=BCMNME=MN,而ME=,MN=,解得x=。点评:该题较典型的反映了解决空间几何问题的解题策略:化空间问题为平面
10、问题来处理。题型4:点面距离例4如图,四面体ABCD中,O、E分别BD、BC的中点,CA=CB=CD=BD=2。()求证:AO平面BCD;()求异面直线AB与CD所成角的大小;()求点E到平面的距离。(1)证明:连结OC。BO=DO,AB=AD, AOBD。BO=DO,BC=CD, COBD。在AOC中,由已知可得AO=1,CO=。而AC=2,AO2+CO2=AC2,AOC=90,即AOOC。AB平面BCD。()解:取AC的中点M,连结OM、ME、OE,由E为BC的中点知MEAB,OEDC。直线OE与EM所成的锐角就是异面直线AB与CD所成的角。在OME中,是直角AOC斜边AC上的中线,异面直
11、线AB与CD所成角的大小为()解:设点E到平面ACD的距离为h.,SACD =AOSCDE.在ACD中,CA=CD=2,AD=,SACD=而AO=1, SCDE=h=点E到平面ACD的距离为。点评:本小题主要考查直线与平面的位置关系、异面直线所成的角以及点到平面的距离等基本知识,考查空间想象能力、逻辑思维能力和运算能力。题型5:线面距离例5斜三棱柱ABCA1B1C1中,底面是边长为4cm的正三角形,侧棱AA1与底面两边AB、AC均成600的角,AA1=7。(1)求证:AA1BC;(2)求斜三棱柱ABCA1B1C1的全面积;(3)求斜三棱柱ABCA1B1C1的体积;(4)求AA1到侧面BB1C1
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-516617.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
