2022年高考数学一轮复习 考点规范练14 导数的概念及运算(含解析)新人教A版(理).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年高考数学一轮复习 考点规范练14 导数的概念及运算含解析新人教A版理 2022 年高 数学 一轮 复习 考点 规范 14 导数 概念 运算 解析 新人
- 资源描述:
-
1、考点规范练14导数的概念及运算基础巩固1.已知函数f(x)=3x+1,则limx0f(1-x)-f(1)x的值为()A.-13B.13C.23D.0答案:A解析:limx0f(1-x)-f(1)x=-limx0f(1-x)-f(1)-x=-f(1)=-131-23=-13.2.已知曲线y=ln x的切线过原点,则此切线的斜率为()A.eB.-eC.1eD.-1e答案:C解析:由题意可得y=lnx的定义域为(0,+),且y=1x.设切点为(x0,lnx0),则切线方程为y-lnx0=1x0(x-x0).因为切线过点(0,0),所以-lnx0=-1,解得x0=e,故此切线的斜率为1e.3.已知函数
2、f(x)在R上满足f(2-x)=2x2-7x+6,则曲线y=f(x)在点(1,f(1)处的切线方程是()A.y=2x-1B.y=xC.y=3x-2D.y=-2x+3答案:C解析:令x=1,得f(1)=1;令2-x=t,可得x=2-t,代入f(2-x)=2x2-7x+6得f(t)=2(2-t)2-7(2-t)+6,化简整理得f(t)=2t2-t,即f(x)=2x2-x,f(x)=4x-1,f(1)=1,f(1)=3,所求切线方程为y-1=3(x-1),即y=3x-2.4.已知y=f(x)是可导函数,如图,直线y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),g(x)是g(x
3、)的导函数,则g(3)=()A.-1B.0C.2D.4答案:B解析:由题图可知曲线y=f(x)在x=3处切线的斜率等于-13,故f(3)=-13.g(x)=xf(x),g(x)=f(x)+xf(x),g(3)=f(3)+3f(3).又由题图可知f(3)=1,g(3)=1+3-13=0.5.曲线f(x)=x3-x+3在点P处的切线平行于直线y=2x-1,则点P的坐标为()A.(1,3)B.(-1,3)C.(1,3)和(-1,3)D.(1,-3)答案:C解析:f(x)=x3-x+3,f(x)=3x2-1.设点P(x,y),则f(x)=2,即3x2-1=2,解得x=1或x=-1,故P(1,3)或(-
4、1,3).经检验,点(1,3),(-1,3)均不在直线y=2x-1上,符合题意.故选C.6.已知曲线y=aex+xln x在点(1,ae)处的切线方程为y=2x+b,则()A.a=e,b=-1B.a=e,b=1C.a=e-1,b=1D.a=e-1,b=-1答案:D解析:y=aex+lnx+1,k=y|x=1=ae+1=2,ae=1,a=e-1.将点(1,1)代入y=2x+b,得2+b=1,b=-1.7.若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是()A.y=sin xB.y=ln xC.y=exD.y=x3答案
5、:A解析:设曲线上两点P(x1,y1),Q(x2,y2),则由导数几何意义可知,两条切线的斜率分别为k1=f(x1),k2=f(x2).若函数具有T性质,则k1k2=f(x1)f(x2)=-1.A项,f(x)=cosx,显然k1k2=cosx1cosx2=-1有无数组解,所以该函数具有性质T;B项,f(x)=1x(x0),显然k1k2=1x11x2=-1无解,故该函数不具有性质T;C项,f(x)=ex0,显然k1k2=ex1ex2=-1无解,故该函数不具有性质T;D项,f(x)=3x20,显然k1k2=3x123x22=-1无解,故该函数不具有性质T.综上,选A.8.若存在过点(1,0)的直线
6、与曲线y=x3和y=ax2+154x-9都相切,则a等于()A.-1或-2564B.-1或214C.-74或-2564D.-74或7答案:A解析:因为y=x3,所以y=3x2.设过点(1,0)的直线与y=x3相切于点(x0,x03),则在该点处的切线斜率为k=3x02,所以切线方程为y-x03=3x02(x-x0),即y=3x02x-2x03.又点(1,0)在切线上,则x0=0或x0=32.当x0=0时,由y=0与y=ax2+154x-9相切,可得a=-2564;当x0=32时,由y=274x-274与y=ax2+154x-9相切,可得a=-1.9.曲线y=(ax+1)ex在点(0,1)处的切
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-517364.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2020-2021学年新教材人教版英语必修第三册课件:UNIT 5 教学知识细解码 .ppt
