2021高考数学二轮复习专题练 三、核心热点突破 专题四 概率与统计 第1讲 统计与统计案例(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021高考数学二轮复习专题练 三、核心热点突破 专题四 概率与统计 第1讲 统计与统计案例含解析 2021 高考 数学 二轮 复习 专题 核心 热点 突破 概率 统计 案例 解析
- 资源描述:
-
1、第1讲统计与统计案例高考定位1.抽样方法、样本的数字特征、统计图表、回归分析与独立性检验主要以选择题、填空题形式命题,难度较小;2.注重知识的交汇渗透,统计与概率、回归分析与概率是近年命题的热点,2018年、2019年和2020年在解答题中均有考查.真 题 感 悟1.(2019全国卷)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A.中位数 B.平均数C.方差 D.极差解析中位数是将9个数据从小到大或从大到小排列后,处于中间位置的数据,因而去掉1个最高分和1个最
2、低分,中位数是不变的,平均数、方差、极差均受影响.答案A2.(2020全国卷)在一组样本数据中,1,2,3,4出现的频率分别为p1,p2,p3,p4,且pi1,则下面四种情形中,对应样本的标准差最大的一组是()A.p1p40.1,p2p30.4B.p1p40.4,p2p30.1C.p1p40.2,p2p30.3D.p1p40.3,p2p30.2解析X的可能取值为1,2,3,4,四种情形的数学期望E(X)1p12p23p34p4都为2.5,方差D(X)1E(X)2p12E(X)2p23E(X)2p34E(X)2p4,标准差为.A选项的方差D(X)0.65;B选项的方差D(X)1.85;C选项的方
3、差D(X)1.05;D选项的方差D(X)1.45.可知选项B的情形对应样本的标准差最大.故选B.答案B3.(2020天津卷)从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:5.31,5.33),5.33,5.35),5.45,5.47),5.47,5.49,并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间5.43,5.47)内的个数为()A.10 B.18 C.20 D.36解析因为直径落在区间5.43,5.47)内的频率为0.02(6.255.00)0.225,所以个数为0.2258018.故选B.答案B4.(2020全国卷)某沙漠地区经过治理,生态系统得
4、到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(xi,yi)(i1,2,20),其中xi和yi分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得xi60,yi1 200, (xi)280, (yi)29 000, (xi)(yi)800.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(xi,yi)(i1,2,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间
5、植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r,1.414.解(1)由已知得样本平均数yi60,从而该地区这种野生动物数量的估计值为6020012 000.(2)样本(xi,yi)(i1,2,20)的相关系数r0.94.(3)分层抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层抽样.理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关性.由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层抽样的方法较好地保持了样本结构与总体结构的一致
6、性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.考 点 整 合1.抽样方法抽样方法包括简单随机抽样、分层抽样,两种抽样方法都是等概率抽样,体现了抽样的公平性,但又各有其特点和适用范围.2.统计中的四个数据特征(1)众数:在样本数据中,出现次数最多的那个数据.(2)中位数:在样本数据中,将数据按大小顺序排列,位于最中间的数据.如果数据的个数为偶数,就取中间两个数据的平均数作为中位数.(3)平均数:样本数据的算术平均数,即(x1x2xn).(4)方差与标准差.s2(x1)2(x2)2(xn)2,s.3.直方图的两个结论(1)小长方形的面积组距频率.(2)各小长方形的面积之和
7、等于1.4.回归分析与独立性检验(1)回归直线x经过样本点的中心(,),若x取某一个值代入回归直线方程x中,可求出y的估计值.(2)独立性检验对于取值分别是x1,x2和y1,y2的分类变量X和Y,其样本频数列联表是:y1y2总计x1ababx2cdcd总计acbdn则K2(其中nabcd为样本容量).热点一抽样方法【例1】 (1)总体由编号为01,02,49,50的50个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第6行的第9列和第10列数字开始从左到右依次选取两个数字,则选出的第4个个体的编号为()附:第6行至第9行的随机数表274861987164414870862888
8、85191620747701111630240429797991968351253211491973064916767787339974673226357900337091601620388277574950A.3 B.19 C.38 D.20(2)(2020百校大联考)在新冠肺炎疫情期间,大多数学生都进行网上上课.我校高一、高二、高三共有学生1 800名,为了了解同学们对“钉钉”授课软件的意见,计划采用分层抽样的方法从这1 800名学生中抽取一个容量为72的样本.若从高一、高二、高三抽取的人数恰好是从小到大排列的连续偶数,则我校高三年级的人数为()A.800 B.750 C.700 D.65
9、0解析(1)由题意知,编号为0150的个体才是需要的个体.由随机数表依次可得41,48,28,19,16,20,故第4个个体的编号为19.故选B.(2)设从高三年级抽取的学生人数为2x人,则从高二、高一年级抽取的人数分别为2x2,2x4.由题意可得2x(2x2)(2x4)72,x13.设我校高三年级的学生人数为N,且高三抽取26人,由分层抽样,得,N650(人).答案(1)B(2)D探究提高解决此类题目的关键是深刻理解各种抽样方法的特点和适用范围.但无论哪种抽样方法,每一个个体被抽到的概率都是相等的,都等于样本容量与总体容量的比值.【训练1】 (1)总体由编号为01,02,19,20的20个个
10、体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行第6列的数字开始,由左到右依次选取两个数字,则选出来的第5个个体的编号为_.附:第1行至第2行的随机数表21 16 65 0890 34 20 7643 81 26 3491 64 17 5071 59 45 0691 27 35 3680 72 74 6721 33 50 2583 12 02 7611 87 05 26(2)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取_件.解析(1)
11、从随机数表的第1行第6列的数字开始,按规则得到的编号依次为50,89,03,42,07,64,38,12,63,49,16,41,75,07,15,94,50,其中编号在01至20之间的依次为03,07,12,16,07,15,按照编号重复的删除后一个的原则,可知选出来的第5个个体的编号为15.(2)因为样本容量n60,总体容量N2004003001001 000,所以抽取比例为.因此应从丙种型号的产品中抽取30018(件).答案(1)15(2)18热点二用样本估计总体角度1数字特征与统计图表的应用【例2】 (1)(2020衡水检测)甲、乙两名同学高三以来6次数学模拟考试的成绩统计如下图,甲、
12、乙两组数据的平均数分别为甲、乙,标准差分别为s甲、s乙,则()A.甲乙,s甲s乙 B.甲乙,s甲s乙C.甲乙,s甲s乙 D.甲乙,s甲s乙(2)2020年初,我国突发新冠肺炎疫情,疫情期间中小学生“停课不停学”.已知某地区中小学生人数情况如甲图所示,各学段学生在疫情期间“家务劳动”的参与率如乙图所示.为了进一步了解该地区中小学生参与“家务劳动”的情况,现用分层抽样的方法抽取4%的学生进行调查,则抽取的样本容量、抽取的高中生中参与“家务劳动”的人数分别为()A.2 750,200 B.2 750,110C.1 120,110 D.1 120,200解析(1)由统计图知,甲同学的总体成绩要好于乙同
13、学的成绩,且乙同学的成绩波动较大,甲同学成绩较稳定.甲乙,且s甲s乙.(2)学生总数为15 5005 0007 50028 000人,由于抽取4%的学生进行调查,则抽取的样本容量为28 0004%1 120(人).故高中生应抽取的人数为5 0004%200(人),而高中生中参与“家务劳动”的比率为0.55,故高中生中参与“家务劳动”的人数为2000.55110(人).答案(1)C(2)C角度2用样本的频率分布估计总体分布【例3】 (2019全国卷)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离
14、子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).解(1)由已知得0.70a0.200.15,故a0.35,b10.050.150.700.10.(2)甲离子残留百分比的平均值的估计值为20.1530.2040.3050.2060.1070.054.05.乙离子残留百分比的平均值
15、的估计值为30.0540.1050.1560.3570.2080.156.00.探究提高1.平均数与方差都是重要的数字特征,是对数据的一种简明描述,它们所反映的情况有着重要的实际意义.平均数、中位数、众数描述数据的集中趋势,方差和标准差描述数据的波动大小.2.在例3中,抓住频率分布直方图各小长方形的面积之和为1,这是求解的关键;本题易混淆频率分布条形图和频率分布直方图,误把频率分布直方图纵轴的几何意义当成频率,导致样本数据的频率求错.【训练2】 (1)(2020新高考海南卷)我国新冠肺炎疫情防控进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是()A.这
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-521962.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
UNIT 8 GREEN LIVING WRITING WORKSHOP 教学课件-高中英语北师大版(2019)必修第三册 .pptx
