河北省沧州市任丘市第一中学2021届高三数学上学期阶段考试试题(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河北省 沧州市 任丘市 第一 中学 2021 届高三 数学 上学 阶段 考试 试题 解析
- 资源描述:
-
1、河北省沧州市任丘市第一中学2021届高三数学上学期阶段考试试题(含解析)考试范围:一轮复习18章 考试时间:120分钟 满分:150分一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知全集为,集合,则( )A. B. C. D. 【答案】C【解析】【分析】化简集合N,根据交集计算即可.【详解】因为,所以,故选:C2. 若,则“”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】由,结合不等式的性质以及充分条件、必要条件的判定方法,即可求解.【详解】由,若,当时,可
2、得,即,所以充分性成立;当,即,可得,所以必要性不成立.所以“”是“”的充分不必要条件.故选:A.【点睛】本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)是的充分不必要条件, 则对应集合是对应集合的真子集;(3)是充分必要条件,则对应集合与对应集合相等;(4)是的既不充分又不必要条件, 对的集合与对应集合互不包含3. 正项等比数列中,是方程的两根,则的值是( )A. 2B. 3C. 4D. 5【答案】A【解析】正项等比数列中,为方程的两根,由韦达定理和等比数列的性质可得,故本题正确答案是4. 将函数图象向左平移个单位,所得函
3、数图象的一个对称中心是( )A. B. C. D. 【答案】D【解析】【分析】先由函数平移得解析式,再令,结合选项即可得解.【详解】将函数图象向左平移个单位,可得.令,解得.当时,有对称中心.故选D.【点睛】本题主要考查了函数的图像平移及正弦型三角函数的对称中心的求解,考查了学生的运算能力,属于基础题.5. 在平行四边形中,若交于点M,则( )A. B. C. D. 【答案】B【解析】【分析】根据三角形相似的性质结合向量的运算,即可得出答案.【详解】,为线段靠近点的四等分点显然,即故选:B【点睛】本题主要考查了用基底表示向量,属于中档题.6. 设,则的值为( )A. 0B. 1C. 2D. 3
4、【答案】C【解析】【分析】根据分段函数,结合指数,对数运算计算即可得答案.【详解】解:由于,所以.故选:C.【点睛】本题考查对数运算,指数运算,分段函数求函数值,考查运算能力,是基础题.7. 函数的图象大致为( )A. B. C. D. 【答案】C【解析】【分析】由可排除A、D;再利用导函数判断在上的单调性,即可得出结论.【详解】因为,故排除A、D;,令,在是减函数,在是增函数,存在,使得,单调递减,单调递增,所以选项B错误,选项C正确.故选:C【点睛】本题考查由解析式选择函数图象的问题,利用导数研究函数单调性是解题的关键,考查学生逻辑推理能力,是一道中档题.8. 中,已知,设D是边的中点,且
5、的面积为,则等于( )A. 2B. 4C. -4D. -2【答案】A【解析】【分析】根据正、余弦定理求出;根据三角形面积公式求出;再根据D是边的中点,将,用和表示,再根据数量积的定义,即可求出结果【详解】, , ,即, ,又角是的内角, 又,即 ,;又D是边的中点.故选:A【点睛】本题考查了正弦定理和余弦定理在解三角形中的应用,同时考查了平面向量基本定理和数量积运算,属中档题二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.)9. 下列说法正确的是( )A. 在中,若,则B. 若、,且,则的最小值为C.
6、 若、,则的最小值为2D. 关于的不等式的解集是,则【答案】AC【解析】【分析】利用正弦定理以及大边对大角定理可判断A选项的正误;利用基本不等式可判断B、C选项的正误;利用二次不等式的解集与二次方程之间的关系可判断D选项的正误.【详解】对于A选项,在中,若,则,由大边对大角定理可知,A选项正确;对于B选项,若、,且,由基本不等式可得,当且仅当时,等号成立,令,由双勾函数的单调性可知,函数在区间上单调递减,即的最小值为,B选项错误;对于C选项,若、,由基本不等式可得,整理得,解得,当且仅当时,等号成立,所以,的最小值为,C选项正确;对于D选项,由题意知,关于的二次方程的两根分别为、,由韦达定理得
7、,解得,所以,D选项错误.故选:AC.【点睛】本题考查命题真假的判断,考查了正弦定理、利用基本不等式求最值,同时也考查了一元二次不等式与二次方程之间的关系,考查推理能力与计算能力,属于中等题.10. 若函数同时满足:对于定义域上的任意x,恒有;对于定义域上的任意,当时,恒有,则称函数为“理想函数”下列四个函数中能被称为“理想函数”的有( )A. B. C. D. 【答案】CD【解析】【分析】满足,是奇函数,满足,在定义域内是减函数,问题转化为判断以下函数是否满足这两个性质.奇偶性和单调性都不满足;奇偶性和单调性都不满足,和,分别用奇偶性定义判定是否为奇函数,再判定它们在定义域内的单调性是否满足
8、.【详解】对于对于定义域内的任意,恒有,即,所以是奇函数; 对于对于定义域内的任意,当时,恒有,不妨设,所以在定义域内是减函数;对于A:,在上是增函数,所以不是“理想函数”;对于 B:偶函数,所以不是“理想函数”;对于C:是奇函数,并且在R上是减函数,所以是“理想函数”;对于D:,所以是奇函数;根据二次函数的单调性,在,都是减函数,且在处连续,所以在上是减函数,所以是“理想函数”.故选:CD.【点睛】本题以新定义为背景,考查函数性质的判定,对于常用函数的单调性和奇偶性要熟练掌握,判定时可以对函数解析进行化简,减少计算量,属于中档题.11. (多选题)在棱长为1的正方体中,点M在棱上,则下列结论
9、正确的是( )A. 直线与平面平行B. 平面截正方体所得截面为三角形C. 异面直线与所成的角为D. 的最小值为【答案】ACD【解析】【分析】,利用面面的性质即可判定直线与平面平行;,平面截正方体所得的截面可能为四边形;,异面直线与所成的角为,即可判定;,原问题相当于:,直线,间距离为1,在上找一点使得到上两点间距离之和最小只需找到关于的对称点即可【详解】对于,面面,即可判定直线与平面平行,故正确;对于,如图1,平面截正方体所得的截面可能为四边形,故错误;对于,如图2,异面直线与所成的角为,因为为等边三角形,即可判定异面直线与所成的角为,故正确;对于,如图3,如图4,原问题相当于:,直线,间距离
10、为1,在上找一点使得到上两点间距离之和最小只需找到关于的对称点,的最小值即为线段的长度,故正确故选:ACD【点睛】本题考查了空间点线面位置关系,考查了转化思想、空间想象能力,意在考查学生对这些知识的理解掌握水平12. 已知函数,若方程有两个不相等的实根,则实数的取值范围可以是( )A. B. C. D. 【答案】AC【解析】【分析】首先利用导数求出分段函数的单调性和最值,从而得到函数的图象,将题意转化为函数与有个交点,根据函数的图象即可得到答案.【详解】当时,令,解得,(舍去).,为减函数,为增函数.当时,令,解得,为减函数,为增函数.,且当时,.函数的图像如图所示:因为方程有两个不相等的实根
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
