《同步备课》高中数学(北师大版)必修四教案:3.3 配角法在三角函数中的应用.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 同步备课 同步备课高中数学北师大版必修四教案:3.3 配角法在三角函数中的应用 同步 备课 高中数学 北师大 必修 教案 3.3 配角 三角函数 中的 应用
- 资源描述:
-
配角法在三角函数中的应用在三角函数中,我们经常会遇到如下一类型的题: 例1 已知 大部分学生会如下的解答思路: 由两角的正弦公式有: 进一步可确定的取值。 此种解法,需要解方程,其中的运算过程稍显繁琐。若仔细分析已知条件,可以将化为为特殊角,其正弦值与余弦值均已知;又由的取值范围可求的取值范围,整体运用的三角函数值,从而求得的值。其解答如下: 解: 评注:将角作适当的变换,配出有关角,便于沟通条件与结论之间的联系,这是三角恒等变换中常用的方法之一,这种变换角的方法通常叫配角法。下面进一步谈一谈配角法在三角函数中的运用。 例2 已知的值。 分析: 解: 例3 已知。 解: 评注:例2与例3都能找出所要求的角与已知条件中的角之间的直接关系,然后运用两角和的正弦公式、同角三角函数的平方关系及三角函数的符号规律来求解。然有的“所求角”与“已知角”之间的关系并没有如此明显,还必须借助于诱导公式。 例4 已知,求的值。 提示: 例5 已知,求的值。 解:因为 评注:例4只需用一次诱导公式,而例5要多次用到诱导公式。 配角法是三角恒等变换中常用的方法之一,用它不仅可以求三角函数的值,而且还可以证明三角等式等,笔者在此就不一一列举。
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-527680.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
(安徽专版)2024春八年级语文下册 第三单元 名著导读专练《经典常谈》作业课件 新人教版.ppt
