分享
分享赚钱 收藏 举报 版权申诉 / 4

类型数学人教A版选修2-3课堂导学:1.1.3分类加法计数原理和分步乘法计数原理(三) WORD版含解析.doc

  • 上传人:a****
  • 文档编号:529227
  • 上传时间:2025-12-09
  • 格式:DOC
  • 页数:4
  • 大小:634KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    数学人教A版选修2-3课堂导学:1.1.3分类加法计数原理和分步乘法计数原理三 WORD版含解析 学人 选修 课堂 1.1 分类 加法 计数 原理 分步 乘法 WORD 解析
    资源描述:

    1、课堂导学三点剖析一、“分类”与“分步”是区分两个计数原理的唯一标准【例1】某同学有若干本课外参考书,其中外语5本,数学6本,物理2本,化学3本,他欲带参考书到图书馆看书.(1)若从这些参考书中带一本去图书馆,有多少种不同的带法?(2)若外语、数学、物理和化学参考书各带一本,有多少种不同的带法?(3)若从这些参考书中选2本不同学科的参考书带到图书馆,有多少种不同的带法?思路分析:(1)中“带一本参考书”应运用加法原理;(2)中“各带一本参考书”应运用乘法原理;(3)中“第2本不同学科的书”应分情况讨论,具有综合性.解析:(1)要完成的事是“带一本参考书”,由于无论带哪一学科的书都完成了这件事,因

    2、此是分类问题,应用加法原理得5+6+2+3=16(种)不同的带法.(2)要完成的事是“外语、数学、物理和化学各带一本”.因此,选一个学科中的一本书只完成了这件事的一部分,只有几个学科的书都选定了之后,才完成这件事,因此是分步计数问题,应用乘法原理,有5623=180(种)不同的带法.(3)要完成的事是“带2本不同学科的书”,因此要分情况考虑,即先考虑是带哪两个学科的书,如带外语、数学各一本,则选一本外语书或选一本数学书都只完成了这一件事的一部分,因此要用乘法原理,即有56=30种选法.同样地,外语、物理各选一本,有52=10种选法.选外语、化学各一本有53=15种选法,从而上述每种选法都完成了

    3、这件事.因此这些选法种数之间还应用加法原理,共有5652+53+62+63+23=91(种)二、两个计数原理的综合应用分类和分步的先后问题【例2】从1到200的自然数中,各个数位上都不含数字8的自然数有多少个?分析:由题设条件要先分类,第一类考虑一位数中有多少不含数字8的自然数;第二类考虑两位数中有多少个不含数字8的自然数,此类中又要分个数和十位数两步,即要分步;第三类考虑三位数中有多少个不含数字8,也要分个位、十位、百位三步.故应先用分类计数原理,在每一类中需要分步的再用分步计数原理求解.解析:由题意分三类解决,第一类:一位数中有8个大于0且不含数字8的自然数.第二类:两位数中有多少不含数字

    4、8的自然数,此类需要分两步,第一步:个位上除8之外有9种选法,第二步:十位数上除0和8之外有8种选法,要根据分步计数原理,得第二类数中有89=72(个)数符合要求.第三类:三位数中有多少不含数字8的自然数,此类需要分两个小类,一类是百位数为1的三位数,此类需分三步,第一步:个位上除8之外有9种选法;第二步:十位数上除8之外有9种选法;第三步:百位数为1,有1种选法.根据分步计数原理,得此类数中有99=81(个)数符合要求.另一类是百位数为2的三位数,即200,就是1个,由分类计数原理得此时第三类的三位数中有81+1=82(个)不含数字8的自然数.故先用分类计数原理再结合分步计数原理,得从1到2

    5、00的自然数中各个数位上都不含数字8的自然有N=8+72+82=162(个).三、用两个计数原理解题时,要注意化归思想和分类讨论思想的使用【例3】求与正四面体四个顶点距离之比为1112的平面的个数.解析:设正四面体的顶点为A,B,C,D,到这四个点距离之比为1112的平面有两类:(1)点A,B,C在平面的同侧,有2个(如图). (2)点A,B,C在平面的两侧,有6个(如图). 转换点A,B,C,D,共可得48=32个平面.各个击破【类题演练1】已知集合M=-3,-2,-1,0,1,2,P(a,b)是平面上的点,a,bM:(1)P(a,b)可表示平面上多少个不同的点?(2)P(a,b)可表示多少

    6、个坐标轴上的点?解析:(1)完成这件事分成两个步骤:a的取法有6种,b的取法也有6种,P点个数为:N=66=36(个)(2)完成这件事可分三类:x轴上(不含原点)有5个;y轴上(不含原点)有5个;既在x轴上,又在y轴上的点即原点也适合,共有N=5+5+1=11(个)【变式提升1】甲厂生产的收音机外壳形状有3种,颜色有4种,乙厂生产的收音机外壳形状有4种,颜色有5种.这两厂生产的收音机仅从外壳的形状和颜色看,共有多少种不同的品种?解析:分两类:一类是甲厂生产的有34种,一类是乙厂生产的有45种,根据加法原理共有34+45=32种.【类题演练2】将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上

    7、的两端点颜色不同;如果只有红、黄、蓝、绿、黑5种颜色可供使用,求不同的染色方法总数.解析:如图所示,四棱锥P-ABCD中,第一步先将侧面PAB上的三点P、A、B染色,由于只有5种颜色且具有同一条棱上的两端点颜色不同,再分三个步骤共有543=60(种)染法.其次,当P、A、B用三种不同的颜色染好后,不妨设分别染的是P红、A黄、B蓝.若点C染黄色,则D可染蓝、绿、黑,即有3种染法.若点C染绿色,则D可染蓝、黑,即有2种染法.若点C染黑色,则D可染蓝、绿,即有2种染法.故第二步C和D还有7种染法.最后,由分步计数原理,得共有607=420(种)染法.【变式提升2】同室四人各写一张贺卡,先集中起来,然

    8、后每人从中拿一张别人送出的贺卡,则四张贺卡的不同分配方式有( )A.6种 B.9种 C.11种 D.23种解析:记四人为甲、乙、丙、丁,则甲送出的卡片可以且只可以由其他的三人之一收到.故有3种分配方式;以乙收到为例,其他人收到卡片的情况可分为两类:第一类:甲收到乙送出的卡片,这时,丙、丁只有互送卡片一种分配方式.第二类:甲收到的不是乙送出的卡片,这时,甲收到卡片的方式有2种(分别为丙和丁送出的),对于每一种情形,丁收到卡片的方式只有一种.因此,根据分类与分步计数原理,得不同的分配方式数为:3(1+2)=9.答案:B【类题演练3】在坐标平面上画出63条直线:y=b,y=+2b,y=+2b,其中b

    9、=-10,-9,-8, ,-1,0,1,8,9,10,这些直线将平面切成若干个等边三角形,其中边长为的等边三角形有多少个?解析:6条最外面的直线围成一个边长为的正六边形,穿过原点O的三条直线将这六边形分成6个边长为的等边三角形.因为每个这样的大三角形的边长是小三角形边长的10倍,且每个大三角形被分成102个小三角形,所以正六边形内部共有边长为的小三角形为6102=600(个).另外,与正六边形每条边相邻的外部都有10个边长为的小三角形(如图).故边长为23的等边三角形的个数为N=6102+610=660.【变式提升3】某赛季足球比赛的计分规则是:胜一场,得3分;平一场得1分;负一场是0分.一球队打完15场,积33分.若不考虑顺序,该队胜、负、平的情形共有( )A.3种 B.4种 C.5种 D.6种解析:设该队胜x场,平y场,负z场,则x,y,z是非负整数,且因为不考虑胜、平、负的顺序,所以问题转化为求此方程组的不同非负整数解的组数.由得,y=3(11-x),代入式,得z=2(x-9).由0y15,0z15,可知因为x是非负整数,所以这个不等式的解为9x11,即x最多只能取9,10,11三个值,对应的y值也只能取6,3,0三个值,对应的z值也只能取0,2,4三个值.从而组成的方程组有且只有三组的非负整数解,选A.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:数学人教A版选修2-3课堂导学:1.1.3分类加法计数原理和分步乘法计数原理(三) WORD版含解析.doc
    链接地址:https://www.ketangku.com/wenku/file-529227.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1