数学人教A版选修2-3课堂导学:1.1.3分类加法计数原理和分步乘法计数原理(三) WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学人教A版选修2-3课堂导学:1.1.3分类加法计数原理和分步乘法计数原理三 WORD版含解析 学人 选修 课堂 1.1 分类 加法 计数 原理 分步 乘法 WORD 解析
- 资源描述:
-
1、课堂导学三点剖析一、“分类”与“分步”是区分两个计数原理的唯一标准【例1】某同学有若干本课外参考书,其中外语5本,数学6本,物理2本,化学3本,他欲带参考书到图书馆看书.(1)若从这些参考书中带一本去图书馆,有多少种不同的带法?(2)若外语、数学、物理和化学参考书各带一本,有多少种不同的带法?(3)若从这些参考书中选2本不同学科的参考书带到图书馆,有多少种不同的带法?思路分析:(1)中“带一本参考书”应运用加法原理;(2)中“各带一本参考书”应运用乘法原理;(3)中“第2本不同学科的书”应分情况讨论,具有综合性.解析:(1)要完成的事是“带一本参考书”,由于无论带哪一学科的书都完成了这件事,因
2、此是分类问题,应用加法原理得5+6+2+3=16(种)不同的带法.(2)要完成的事是“外语、数学、物理和化学各带一本”.因此,选一个学科中的一本书只完成了这件事的一部分,只有几个学科的书都选定了之后,才完成这件事,因此是分步计数问题,应用乘法原理,有5623=180(种)不同的带法.(3)要完成的事是“带2本不同学科的书”,因此要分情况考虑,即先考虑是带哪两个学科的书,如带外语、数学各一本,则选一本外语书或选一本数学书都只完成了这一件事的一部分,因此要用乘法原理,即有56=30种选法.同样地,外语、物理各选一本,有52=10种选法.选外语、化学各一本有53=15种选法,从而上述每种选法都完成了
3、这件事.因此这些选法种数之间还应用加法原理,共有5652+53+62+63+23=91(种)二、两个计数原理的综合应用分类和分步的先后问题【例2】从1到200的自然数中,各个数位上都不含数字8的自然数有多少个?分析:由题设条件要先分类,第一类考虑一位数中有多少不含数字8的自然数;第二类考虑两位数中有多少个不含数字8的自然数,此类中又要分个数和十位数两步,即要分步;第三类考虑三位数中有多少个不含数字8,也要分个位、十位、百位三步.故应先用分类计数原理,在每一类中需要分步的再用分步计数原理求解.解析:由题意分三类解决,第一类:一位数中有8个大于0且不含数字8的自然数.第二类:两位数中有多少不含数字
4、8的自然数,此类需要分两步,第一步:个位上除8之外有9种选法,第二步:十位数上除0和8之外有8种选法,要根据分步计数原理,得第二类数中有89=72(个)数符合要求.第三类:三位数中有多少不含数字8的自然数,此类需要分两个小类,一类是百位数为1的三位数,此类需分三步,第一步:个位上除8之外有9种选法;第二步:十位数上除8之外有9种选法;第三步:百位数为1,有1种选法.根据分步计数原理,得此类数中有99=81(个)数符合要求.另一类是百位数为2的三位数,即200,就是1个,由分类计数原理得此时第三类的三位数中有81+1=82(个)不含数字8的自然数.故先用分类计数原理再结合分步计数原理,得从1到2
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-529227.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
