数学人教A版选修4-1学案:互动课堂 第二讲二 圆内接四边形的性质与判定定理 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学人教A版选修4-1学案:互动课堂 第二讲二圆内接四边形的性质与判定定理 WORD版含解析 学人 选修 互动 课堂 第二 圆内接 四边形 性质 判定 定理 WORD 解析
- 资源描述:
-
1、互动课堂重难突破一、圆内接四边形的性质定理圆内接四边形的性质定理包括两个:定理1是圆的内接四边形对角互补;定理2是圆的内接四边形的外角等于它的内角的对角.这两个定理表述形式稍有差别,但反映的本质相同,都反映了圆内接四边形所具有的特征.利用这两个定理,可以借助圆变换角的位置,得到角的相等关系或互补关系,再进行其他的计算或证明.利用这两个定理可以得出一些重要结论,如内接于圆的平行四边形是矩形;内接于圆的菱形是正方形;内接于圆的梯形是等腰梯形.应用这些性质可以大大简化证明有关几何题的推理过程.二、圆内接四边形的判定定理1.定理:如果一个四边形的一组对角互补,那么这个四边形内接于圆.2.符号语言表述:
2、在四边形ABCD中,如果B+D=180,那么四边形ABCD内接于圆.3.证明思路:要证明四边形ABCD内接于圆,就是要证明A、B、C、D四点在同一个圆上.根据我们的经验,若能证明这四个点到一个定点距离相等即可.但是这个定点一时还找不出来.不过对于不在同一条直线上的三点来说,总可以确定一个圆.因此我们可以先经过A、B、C、D中的任意三个点,譬如过A、B、C三点作一个圆,再证明第四个点D也在这个圆上就可以了.但是直接证明点D在圆上很困难,所以我们采用反证法证明.也就是假设点D不在圆上,经过推理论证,得出错误的结论,这就说明点D不在圆上是错误的,因此点D只能在圆上.图2-2-1由于点D不在圆上时,可
3、能出现点D在圆外和点D在圆内两种情况,所以应分别加以证明,下面先讨论点D在圆内的情况.假设点D在圆内,若作出对角线BD,延长BD和圆交于D,连结AD、CD,则ABCD为圆内接四边形(如图221),则ABC+ADC=180.另一方面,因为ADB、BDC分别是ADD和CDD的外角,所以有ADBADB,BDCBDC,于是有ADCADC.因为已知ABC+ADC=180,所以ABCADC180,这与圆内接四边形的性质定理矛盾.因此可证点D不能在圆内.用类似的方法也可以证明点D也不能在圆外.因此点D在圆上,即四边形ABCD内接于圆.三、判定四点共圆的方法(1)如果四个点与一定点距离相等,那么这四个点共圆.
4、(2)如果一个四边形的一组对角互补,那么这个四边形的四个顶点共圆.(3)如果一个四边形的一个外角等于它的内对角,那么这个四边形的四个顶点共圆.(4)如果两个直角三角形有公共的斜边,那么这两个三角形的四个顶点共圆(因为四个顶点与斜边中点距离相等).四、刨根问底问题 圆内接四边形判定定理的证明,推导出与圆内接四边形性质定理相矛盾的结果,体现了反证法证明几何命题的基本思路.反证法是证明问题的有效方法,那么与正面证明相比较,反证法有什么特点?它证明问题的步骤怎样?它有什么优点?探究:反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的
5、假设,达到肯定原命题正确的一种方法. 反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n -1)个;至多有一个/至少有两个;唯一/至少有两个.归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木.推理必须严谨.导出的矛盾有如下几种类型:与已知条件矛盾,与已知的公理、定义、定理、公式矛盾,与反设矛盾,自相矛盾.反证法可以分为归谬反证法(结论的反面只有一
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-529285.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
