数学人教B版必修4示范教案:1.1.1 角的概念的推广 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学人教B版必修4示范教案:1.1.1角的概念的推广 WORD版含解析 学人 必修 示范 教案 1.1 概念 推广 WORD 解析
- 资源描述:
-
1、示范教案教学分析教材分三段编写,首先复习初中学过的角的概念,然后设置“观览车”问题情境,推广角的概念,最后研究象限角的性质及表达式这样可以使学生在已有经验(生活经验、数学学习经验)的基础上,更好地认识任意角、象限角、终边相同的角等概念让学生体会到把角推广到任意角的必要性,引出角的概念的推广问题本节充分结合角和平面直角坐标系的关系,建立了象限角的概念,使得任意角的讨论有一个统一的载体教学中要特别注意这种利用几何的直观性来研究问题的方法,引导学生善于利用数形结合的思想方法来认识问题、解决问题,让学生初步学会在平面直角坐标系中讨论任意角能熟练写出与已知角终边相同的角的集合,是本节的一个重要任务学生的
2、活动过程决定着课堂教学的成败,教学中应反复挖掘“探究”栏目及“探究”示图的过程功能,在这个过程上要不惜多花些时间,让学生进行操作与思考,自然地、更好地归纳出终边相同的角的一般形式,也就自然地理解了集合S|k360,kZ的含义如能借助信息技术,则可以动态表现角的终边旋转的过程,更有利于学生观察角的变化与终边位置的关系,让学生在动态的过程中体会,既要知道旋转量,又要知道旋转方向,才能准确刻画角的形成过程的道理,更好地了解任意角的深刻涵义与以往教材不同的是,把旋转的合成与角度的加法运算对应起来,使数与形紧密结合,以加深学生对角度运算的直观认识书中通过4个例题,要求学生能熟练地掌握旋转与角度的加法运算
3、关系象限角的概念、象限角和终边落在坐标轴上的角的代数表示要求练习A、B组习题全做,但B组5题为扩展题,可让学生选做三维目标1通过实例的展示,使学生理解角的概念推广的必要性,理解并掌握正角、负角、零角、象限角、终边相同角的概念及表示,树立运动变化的观点,并由此深刻理解推广之后的角的概念2通过自主探究、合作学习,认识集合S中k、的准确含义,明确终边相同的角不一定相等,终边相同的角有无限多个,它们相差360的整数倍3通过类比正、负数的规定,让学生认识正角、负角并体会类比、数形结合等思想方法的运用,为今后的学习与发展打下良好的基础重点难点教学重点:将0360范围的角推广到任意角,终边相同的角的集合教学
4、难点:用集合来表示终边相同的角课时安排1课时导入新课思路1.(情境导入)如图1,在许多学校的门口都有摆设的一些游戏机,只要指针旋转到阴影部分即可获得高额奖品由此提问:指针怎样旋转,旋转多少度才能赢?还有我们所熟悉的体操运动员旋转的角度;自行车车轮旋转的角度;螺丝扳手的旋转角度,这些角度都怎样解释?在学生急切想知道的渴望中引入角的概念的推广图1思路2.在日常生活中,只要我们用心去观察,又勤于思考,就会发现许多与数学有关的事情游乐园是人们爱去的地方,各种神奇的游戏器械吸引着人们去玩耍,那高大的观览车绕轴转动着,边缘上悬挂的座椅,带着游人在空中旋转,给游人带来乐趣!你想过吗?图2从你的座位开始转动的
5、时刻到某个时刻,你的座位转了多少角度?由此让学生展开讨论,进而引入角的概念的推广问题推进新课(1)你的手表慢了5分钟,你将怎样把它调整准确?假如你的手表快了1.25小时,你应当怎样将它调整准确?当时间调整准确后,分针转过了多少度角?(2)体操运动中有转体两周,在这个动作中,运动员转体多少度?(3)请两名男生(或女生、或多名男女学生)起立,做由“面向黑板转体背向黑板”的动作.在这个过程中,他们各转体了多少度?活动:让学生到讲台利用准备好的教具钟表,实地演示拨表的过程;让学生站立原地做转体动作教师强调学生观察旋转方向和旋转量,并思考怎样表示旋转方向对回答正确的学生及时给予鼓励、表扬,对回答不准确的
6、学生提示引导考虑问题的思路角可以看作是平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形,设一条射线的端点是O,它从起始位置OA按逆时针方向旋转到终止位置OB,则形成了一个角,点O是角的顶点,射线OA、OB分别是角的始边和终边我们规定:一条射线绕着它的端点按逆时针方向旋转形成的角叫做正角;按顺时针方向旋转形成的角叫做负角钟表的时针和分针在旋转过程中所形成的角总是负角,为了简便起见,在不引起混淆的前提下,“角”或“”可以简记作“”如果一条射线没有作任何旋转,我们称它形成了一个零角,零角的始边和终边重合,如果是零角,那么0.讨论结果:(1)顺时针方向旋转了30;逆时针方向旋转了450.(
7、2)顺时针方向旋转了720或逆时针方向旋转了720.(3)180或180或540或540或900活动:先让学生看书、思考、并讨论这些问题,教师提示、点拨,并对回答正确的学生及时表扬,对回答不准确的学生,教师提示、引导考虑问题的思路学生作这样的角,使用一条射线作为始边,没有固定的参照,所以会作出很多形式不同的角教师可以适时地提醒学生:如果将角放到平面直角坐标系中,问题会怎样呢?并让学生思考讨论在直角坐标系内讨论角的好处:使角的讨论得到简化,还能有效地表现出角的终边“周而复始”的现象今后我们通常在平面直角坐标系中研究和讨论角平面内任意一个角都可以通过移动使角的顶点与坐标原点重合,角的始边与x轴的非
8、负半轴重合,那么角的终边在第几象限,我们就说这个角是第几象限角要特别强调角与直角坐标系的关系角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合讨论结果:(1)能如图3中的(1)、(2)图3(2)使角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,角的终边在第几象限,我们就说这个角是第几象限角这样:上图(1)中的45,315,405角都是第一象限角(2)中的124角是第二象限的角,210角是第三象限的角,45角是第四象限的角特别地,终边落在坐标轴上的角不属于任何一个象限,比如0角可以借此进一步设问:锐角是第几象限角?钝角是第几象限角?直角是第几象限角?反之如何?将角按照上述方法放在直角坐标
9、系中,给定一个角,就有唯一一条终边与之对应,反之,对于直角坐标系中的任意一条射线OB,以它为终边的角是否唯一?如果不唯一,那么终边相同的角有什么关系?(1)在直角坐标系中标出210,150的角的终边,你有什么发现?它们有怎样的数量关系?328,32,392角的终边及数量关系是怎样的?终边相同的角有什么关系?(2)所有与终边相同的角,连同角在内,怎样用一个式子表示出来?活动:让学生从具体问题入手,探索终边相同的角的关系,再用所准备的教具或是多媒体给学生演示:演示象限角、终边相同的角,并及时地引导终边相同的一系列角与0到360间的某一角有什么关系,从而为终边相同的角的表示作好准备为了使学生明确终边
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2012届高考化学二轮复习课件(湖南):第13课时.ppt
