数学北师大版必修3教案: 第二章算法初步1.DOC
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学北师大版必修3教案: 第二章算法初步1 数学 北师大 必修 教案 第二 算法 初步
- 资源描述:
-
1、第二章 算法初步本章教材分析 算法是数学及其应用的重要组成部分,是计算科学的重要基础.随着现代信息技术的飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并融入社会生活的方方面面,算法思想已经成为现代人应具备的一种数学素养.需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想.在这一章中,学生将在义务教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验流程图在解决问题中的作用;通过模仿、操作、探索,学习设计流程图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力. 算法作为新名词,在以前的数学教科书中没有出现过.但
2、是算法本身,同学们并不陌生.解方程的算法、解不等式的算法、因式分解的算法,都是同学们熟知的内容.只是算法的基本思想、特点,学习算法的必要性等问题没有专门涉及.因此,本章中的算法的基本思想,将针对同学们熟悉的一些问题,分析解决这些具体问题的算理,整理出相应问题的解决步骤,然后抽象概括出更具一般意义的算法.通过这个过程,让学生体会算法的程序化思想.同时,针对同样的问题,我们给出不同的算法,让同学们意识到:同一个问题可能存在着多种算法,算法之间有优劣之分.接下来,通过求方程近似解,让同学们意识到学习算法的必要性将问题的解决过程即算法交给计算机完成,能够极大地提高效率. 接下来,介绍算法的基本结构.顺
3、序结构和选择结构是学生比较容易接受的,循环结构则比较难以理解.分析造成理解困难的原因之一是变量以及对变量的处理赋值.在循环结构的学习中,总结了循环结构的三个要素循环变量、循环体和循环的终止条件,并提供了可供学生模仿、操作的算法流程图. 排序算法可以说是应用最广泛的算法了,而且又易于理解,便于接受,是算法教学的良好素材.教材选择这个问题作为专题来讨论,给学生提供一个完整的分析、设计算法的过程,也给学生一个应用前面所学的关于变量和结构的知识的机会. 在前面的学习中,我们分别用自然语言和流程图来描述算法,这两种方式各有优缺点.要将算法最终交给计算机执行,需要用程序语言来表述算法,程序语言有很多种,但
4、是有一些基本语句是这些语言都要用到的:输入输出语句、赋值语句、条件语句、循环语句,在本章的最后介绍了这几种基本语句. 值得注意的是:1.注重对算法基本思惲的理解.算法是高中数学课程中的新内容,其思想非常重要,但并不神秘.例如,运用消元法解二元一次方程组、求最大公因数等的过程本质上就是算法.本模块中的算法内容是将数学中的算法与计算机技术建立联系,形式化地表示算法,在条件允许的学校,使其能在计算机上实现.为了有条理地、清晰地表达算法,往往需要将解决问题的过程整理成流程图;为了能在计算机上实现,还需要将自然语言或流程图翻译成计算机语言.本模块的主要目的是使学生体会算法的思想,提高逻辑思维能力.不要将
5、此部分内容简单处理成程序语言的学习和程序设计.2.算法教学必须通过实例进行.使学生在解决具体问题的过程中学习一些基本逻辑结构和语句.有条件的学校,应鼓励学生上机尝试运行程序.在实例的选择中,我们要把握这样一些原则:亲和原则:选取的例子要贴近学生,或者来自学生的生活实践,或者是学生所学过的数学知识.趣味性原则:选取的实例一般要有丰富的背景,本身要有趣味性.基础性原则:问题本身的算理并不难,只要蕴涵丰富的算法思想.可操作性原则:所选取问题的算法一般能在计算机上实现.3.算法教学要注意循序渐进,先具体再抽象,先了解算理,再描述算法. 通常,我们说一个算法越是抽象,有一般意义,应用就越广泛,越能体现算
6、法本身的应用价值.但是,作为教学意义上的算法则不同,一定要从具体问题出发分析算法的算理及算法步骤,然后抽象概括出一般意义的算法,画出算法流程图,并在这个过程中,学习使用变量、赋值,学习更好地表述算法,以便在计算机上操作执行. 算法的教学中,变量的理解、赋值的应用、循环结构的理解是重点和难点.教师要注意分散这些难点.学生对算法思想的认识、概念的把握、知识的灵活应用及能力的形成不是一次完成的,而是要把这些作为教学目标渗透在整章的学习中. 本章教学时间约需9课时,具体分配如下(仅供参考):1.1算法案例分析约1课时1.2排序问题与算法的多样性约1课时2.1顺序结构和选择结构约2课时2.2变量与赋值约
7、1课时2.3循环结构约1课时3.1条件语句约1课时3.2循环语句约1课时本章复习约1课时1 算法的基本思想1.1 算法案例分析整体设计教学分析 算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述:“算法是解决某一类问题的步骤和程序.”为了让学生更好理解这一概念,教科书用5个例子来说明算法的实质.教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固.三维目标1.正确理解算法的概念,掌握算法的基本特点.2.通过例题教学,使学生体会设计算法的基本思路.3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣.重点难点教学重点:算法的含义及应用.教
8、学难点:写出解决一类问题的算法.课时安排1课时教学过程导入新课思路1(情境导入).一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量狼就会吃羚羊.该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容算法.思路2(情境导入).大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步?答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上.上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念.思路3(直接导入).算法不仅是数学及其应用的重
9、要组成部分,也是计算机科学的重要基础.在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始.推进新课新知探究提出问题(1)解二元一次方程组有几种方法?(2)结合实例总结用加减消元法解二元一次方程组的步骤.(3)结合实例总结用代入消元法解二元一次方程组的步骤.(4)请写出解一般二元一次方程组的步骤.(5)根据上述实例谈谈你对算法的理解.(6)请同学们总结算法的特征.(7)请思考我们学习算法的意义.讨论结果:(1)代入消元法和加减消元法.(2)回顾二元一次方程组的求解过程,我们
10、可以归纳出以下步骤:第一步,+2,得5x=1.第二步,解,得x=.第三步,-2,得5y=3. 第四步,解,得y=35.第五步,得到方程组的解为(3)用代入消元法解二元一次方程组我们可以归纳出以下步骤:第一步,由得x=2y1. 第二步,把代入,得2(2y1)+y=1. 第三步,解得y=. 第四步,把代入,得x=21=.第五步,得到方程组的解为(4)对于一般的二元一次方程组其中a1b2a2b10,可以写出类似的求解步骤:第一步,b2-b1,得(a1b2a2b1)x=b2c1b1c2. 第二步,解,得x=.第三步,a1-a2,得(a1b2a2b1)y=a1c2a2c1. 第四步,解,得y=.第五步,
11、得到方程组的解为(5)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.(6)算法的特征:确定性:算法的每一步都应当做到准确无误、“不重不漏”.“不重”是指不是可有可无的,甚至无用的步骤,“不漏” 是指缺少哪一步都无法完成任务.逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确,“前一步”是“后一步”的前提, “后一步”是“前一步”的继续.有穷性:算法要有明确的开始和结束,当
12、到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行.(7)在解决某些问题时,需要设计出一系列可操作或可计算的步骤来解决问题,这些步骤称为解决这些问题的算法.也就是说,算法实际上就是解决问题的一种程序性方法.算法一般是机械的,有时需进行大量重复的计算,它的优点是一种通法,只要按部就班地去做,总能得到结果.因此算法是计算机科学的重要基础.应用示例思路1例1 在给定素数表的条件下,设计算法,将936分解成素因数的乘积.(素数表见教材附录1)分析:1.查表判断936是否是素数:(1)如果936是素数,则分解结束;(2)如果936不是素数,则进行第2步.2
13、.确定936的最小素因数:2. 936=2468.3.查表判断468是否是素数:(1)如果468是素数,则分解结束;(2)如果468不是素数,则重复上述步骤,确定468的最小素因数.重复进行上述步骤,直到找出936的所有素因数.解:算法步骤如下:1.判断936是否为素数:否.2.确定936的最小素因数:2. 936=2468.3.判断468是否为素数:否.4.确定468的最小素因数:2. 936=22234.5.判断234是否为素数:否.6.确定234的最小素因数:2 936=222117.7.判断117是否为素数:否.8.确定117的最小素因数:3. 936=222339.9.判断39是否为
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
