河北省石家庄市2019届高三毕业班模拟考试(二)数学(文)试卷 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河北省石家庄市2019届高三毕业班模拟考试二数学文试卷 WORD版含解析 河北省 石家庄市 2019 届高三 毕业班 模拟考试 数学 试卷 WORD 解析
- 资源描述:
-
1、石家庄市2019届高中毕业班模拟考试(二)文科数学一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的1.设是虚数单位,复数()A. B. C. D. 【答案】D【解析】【分析】利用复数的除法运算,化简复数,即可求解,得到答案【详解】由题意,复数,故选D【点睛】本题主要考查了复数的除法运算,其中解答中熟记复数的除法运算法则是解答的关键,着重考查了运算与求解能力,属于基础题2.已知全集,集合,则()A. B. C. D. 【答案】B【解析】【分析】由补集的运算求得,再根据集合的并集运算,即可求解,得到答案【详解】由题意,集合,则,根据集合的并集运算,可得,故选B【点睛】本题主要考查了集
2、合混合运算,其中解答中熟记集合的并集和补集的概念及运算是解答的关键,着重考查了运算与求解能力,属于基础题3.如图是一个算法流程图,则输出的结果是()A. B. C. D. 【答案】A【解析】【分析】执行程序框图,逐次计算,根据判断条件终止循环,即可求解,得到答案【详解】由题意,执行上述的程序框图:第1次循环:满足判断条件,;第2次循环:满足判断条件,;第3次循环:满足判断条件,;不满足判断条件,输出计算结果,故选A【点睛】本题主要考查了循环结构的程序框图的结果的计算与输出,其中解答中执行程序框图,逐次计算,根据判断条件终止循环是解答的关键,着重考查了运算与求解能力,属于基础题4.某班全体学生测
3、试成绩的频率分布直方图如图,数据的分组依次为:,若高于分的人数是,则该班的学生人数是()A. B. C. D. 【答案】C【解析】【分析】根据给定的频率分布直方图,可得在之间的频率为,再根据高于分的人数是,即可求解学生的人数,得到答案【详解】由题意,根据给定频率分布直方图,可得在之间的频率为,又由高于分的人数是,则该班的学生人数是人,故选C【点睛】本题主要考查了频率分布直方图的应用,其中解答中熟记频率分布直方图的性质是解答的关键,着重考查了运算与求解能力,属于基础题5.已知实数、满足不等式组,则的最大值为()A. B. C. D. 【答案】A【解析】【分析】画出不等式组所表示的平面区域,结合图
4、形确定目标函数的最优解,代入即可求解,得到答案【详解】画出不等式组所表示平面区域,如图所示,由目标函数,化直线,当直线过点A时,此时直线在y轴上的截距最大,目标函数取得最大值,又由,解得,所以目标函数的最大值为,故选A【点睛】本题主要考查简单线性规划求解目标函数的最值问题其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题6.已知抛物线,过焦点的直线与此抛物线交于,两点,点在第一象限,过点作抛物线准线的垂线,垂足为,直线的斜率为,则的面积为()A. B. C. D. 【答案】A【解析】【分析】根
5、据抛物线的几何性质,求出点A的坐标,得到,利用三角形的面积公式,即可求解,得到答案【详解】由题意,抛物线的焦点为,准线方程为,设,则,因为直线的斜率为,所以,所以,所以,所以的面积为,故选A【点睛】本题主要考查了抛物线的性质的应用,以及三角形面积的计算,其中解答中熟练应用抛物线的几何性质,合理准确计算是解答的关键,着重考查了运算与求解能力,属于基础题7.将函数的图象向左平移个单位长度,得到的函数为偶函数,则的值为()A. B. C. D. 【答案】D【解析】【分析】利用三角函数的图象变换求得函数的解析式,再根据三角函数的性质,即可求解,得到答案【详解】将将函数的图象向左平移个单位长度,可得函数
6、又由函数为偶函数,所以,解得,因为,当时,故选D【点睛】本题主要考查了三角函数的图象变换,以及三角函数的性质的应用,其中解答中熟记三角函数的图象变换,合理应用三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题8.设表示直线,表示不同的平面,则下列命题中正确的是()A. 若且,则B. 若且,则C. 若且,则D. 若且,则【答案】B【解析】【分析】A中,与可能相交、平行或;B中,由面面平行的性质可得;C中,与相交或平行;D中,与相交或平行,即可求解【详解】由表示直线,表示不同的平面,在A中,若且,则,则与可能相交、平行或; 在B中,若且,则,由面面平行的性质可得;在C中,若且,
7、则,则与相交或平行; 在D中,若且,则,则与相交或平行,故选B【点睛】本题主要考查了线面位置关系的判定与证明,其中解答中熟记线面位置关系的判定定理与性质定理是解答的关键,着重考查了推理与运算能力,属于基础题9.已知双曲线与双曲线有相同的渐近线,则双曲线的离心率为()A. B. C. D. 【答案】C【解析】【分析】由双曲线与双曲线有相同的渐近线,列出方程求出的值,即可求解双曲线的离心率,得到答案【详解】由双曲线与双曲线有相同的渐近线,可得,解得,此时双曲线,则曲线的离心率为,故选C【点睛】本题主要考查了双曲线的标准方程及其简单的几何性质的应用,其中解答中熟记双曲线的几何性质,准确运算是解答的关
8、键,着重考查了运算与求解能力,属于基础题10.设函数在上可导,其导函数为,若函数在处取得极大值,则函数的图象可能是()A. B. C. D. 【答案】B【解析】【分析】由题设条件知:时,时,或 时,时,由此即可求解【详解】由函数在上可导,其导函数为,若函数在处取得极大值,所以当时,;时,;时,;所以当时,当时,当或 时,当时,可得选项B符合题意,故选B【点睛】本题主要考查了利用导数研究函数的极值的应用,其中解答中认真审题,主要导数的性质和函数的极值之间的关系合理运用是解答的关键,着重考查了推理与运算能力,属于基础题11.已知当,时,则以下判断正确的是()A. B. C. D. 与的大小关系不确
9、定【答案】C【解析】【分析】设,利用导数求得函数在单调递增,再根据,即可求解,得到答案【详解】由题意,设,则,当时,单调递增,又由,所以,即,故选C【点睛】本题主要考查了利用导数研究函数的单调性及其应用,其中解答中设出新函数,利用导数求得函数的单调性是解答的关键,着重考查了推理与运算能力,属于中档试题12.在中,角,的对边长分别为,满足,则ABC的面积为()A. B. C. D. 【答案】D【解析】【分析】化简得,又由,得到,解得,由余弦定理,利用面积公式,即可求解【详解】由题意知,可得,即,即,又由,当且仅当,即时等号成立,所以,所以,解得,在中,由余弦定理可得,即,整理得,解得,所以三角形
10、的面积,故选D【点睛】本题主要考查了三角函数恒等变换公式,以及余弦定理的应用,其中解答中熟练应用三角恒等变换的公式,化简求得,再根据余弦定理求得是解答的关键,着重考查了推理与运算能力,属于中档试题二、填空题13.已知,则_【答案】【解析】【分析】根据三角函数的基本关系式求得,进而求得,即可求解,得到答案【详解】根据三角函数的基本关系式可得,又因为,所以,所以【点睛】本题主要考查了三角函数的基本关系式的化简、求值,其中解答中合理应用三角函数的基本关系式,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题14.已知函数,则_【答案】【解析】【分析】由时,得到函数是周期为1的函数,可得,即可
11、求解【详解】由函数,可得当时,满足,所以函数是周期为1的函数,所以【点睛】本题主要考查了分段函数的求值问题,以及函数的周期性的应用,其中解答中得到函数的周期性,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题15.在平行四边形中,已知,若,则_【答案】【解析】【分析】设,则,得到,利用向量的数量积的运算,即可求解【详解】由题意,如图所示,设,则,又由,所以为的中点,为的三等分点,则,所以【点睛】本题主要考查了向量的共线定理以及向量的数量积的运算,其中解答中熟记向量的线性运算法则,以及向量的共线定理和向量的数量积的运算公式,准确运算是解答的关键,着重考查了推理与运算能力,属于中档试题1
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-532788.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
四年级上册英语单元知识清单-Unit1∣译林版(三起) (共7张PPT).ppt
