分享
分享赚钱 收藏 举报 版权申诉 / 5

类型数学思想要在课堂教学中充分的体现.doc

  • 上传人:a****
  • 文档编号:534443
  • 上传时间:2025-12-09
  • 格式:DOC
  • 页数:5
  • 大小:14.50KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    数学 思想 课堂教学 充分 体现
    资源描述:

    1、数学思想要在课堂教学中充分的体现:从当前的教学实际来看,学生面对大量的数学习题往往是一筹莫展,大有不知从何入手去解题之感。面对此问题,学生困惑,老师着急。实不知学生一旦在教师平时的指导下,在课堂学习中养成良好的学习习惯,形成系统数学思想,则再去思考数学问题就会得心应手,事半功倍!故数学思想在教学中的充分体现,应成为当前数学教学的第一需要!:数学思想,课堂教学,应用目前对于数学思想的提法很是流行,对其概念的界定也是众说纷纭。然而据多年的教学实践,笔者认为数学思想就是学生通过对数学的学习形成自己的观点和认知规律。数学思想的应用即把这些属于自己的数学规律用于学习和解题的过程中。从而达到事半功倍的效果

    2、。简言之数学思想主要体现在数学语言、等价转化、数形结合、类比、分类等规律的总结和运用上。那么我们究竟如何在平时的教学中卓有成效的培养学生的数学思想并促使其学会应用呢?这是值得我们每个教育工作者关注和思考的一个问题。从教学实践中可知:数学课的教学,实际上是教给学生数学方法和数学基础知识。而这两者之间的关系是显性与隐性的关系。知识点是获得数学知识、发展数学思维的动力,是培养学生解决实际问题能力的钥匙。众所周知,中学数学的基本知识主要是代数、几何和三角中由其内容所反映出来的数学思想和方法,它须教师在课堂上向学生展示获得知识、技能及解决问题的思考过程和解决问题的方法,力求使学生不断接触了解一些重要的数

    3、学思想和方法。那么我们怎样在教学实践中去落实这一点呢?笔者认为从以下几个方面入手较好:一、落实基本概念,培养学生的数学思想因为对于概念的深刻理解,是提高解题能力的坚实基础,能力的提高是通过学生对数学语言表达和对数学符号的运用来体现的,数学语言和符号实现了思维的概括性和简明性。由繁与简、新与旧之间达到对立的协调和谐的统一。例如在讲切线的判定定理时,不仅抓住定理的内涵和外延,更注重数学语言和符号思想的培养。学生既要熟知“过半径外端并且垂直于这条半径的直线是圆的切线。”这一定理,还要在头脑中形成直观的形象即OAAT;OA是O的半径则自然推出AT是O的切线,A是切点。如果需证直线AT是O的切线时则(1

    4、)如果知道ATOA,必须证明A在O上或OA是O的半径(2)如果知道A在O上,必须证明OAAT。当学生掌握了以上知识点时,再做练习:“梯形ABCD,ABCD,A=90?,BC是O的直径,且BC=ABCD。求证:AD是O的切线”时,大多数学生都会过点O作OEAD,垂足为E,再证明OE是O的半径。这样从概念入手,在解题的过程中形成数学意识。二、注重数形结合,构建学生的数学思想数学知识尽管来源于生活实践,但数学最本质的东西是从生活实践中的知识高度概括和抽象出来的。这就要求在教学中把抽象的知识具体化、形象化,通过直观的形象来深化教学的实质。为了培养学生的思维能力,教师应该将数形结合思想充分暴露给学生。例

    5、如在学习直线与圆的位置关系时,我在教学中构造了直观数学模型(一个圆面与一条直尺)设O的半径为R,圆心O到直线L的距离为d,从直线与O相离时慢慢移动,观察直线与圆的位置关系,通过“数”和“形”的对比,学生很容易认识并掌握直线与的位置的三种关系。能应用这种数量关系去判定直线与圆的位置关系。三、注重合理分类,梳理学生的数学思想分类思想是根据所研究的对象相同点和不同点区分不同类型的数学思想方法。分类有两个性质:第一,同一性;第二,独立性。同一性是指分类的标准是一致的。独立性是指每类独立存在,不重复也不遗漏。例如在教学圆周角定理“一条弧所对的圆周角等于它所对的圆心角的一半”的证明过程时,通过圆心在圆周角

    6、外部、一边上、角的内部三种情况,把此定理的证明过程分成三类进行证明,圆周角一边过圆心最易证明,其他两种情况可转化到第一种情况也容易证明。这样以来,学生头脑中思路更为清晰,解起题来就会得心应手!四、运用“等价转化和换元”体现数学思想在解方程(组)的教学中,强化消元、降次的思想,就解分式方程来谈,解分式方程反映出来的数学方法就是把分式方程转化为整式方程,其中渗透了“等价转化”的数学思想。通过分式方程的学习,学生逐步明确和掌握“把分式方程化为整式方程”这一基本的数学方法。更重要的“转化”是解数学题的重要手段。一位好的数学教师要学生努力保持好的解题胃口,任何一个数学问题都是通过“联想、构造、转化”的思

    7、维方式有机地进行数形转化,从而实现未知到已知的过程。渗透转化和换元思想是引导学生以下几点:1、解方程(组)降次、换元、公式变形。2、一元二次方程和一元二次函数转化的思想。3、几何辅助线引发第一,几何习题的条件和结论的变化;第二,对图形的变化。4、代数、几何、三角之间的转化思想。强化转化思想,他能有效地帮助学生理解代数式、方程、不等式、几何、三角有机的内在联系。看来观察是解题的前提和基础,联想是桥梁,转化是解题的思想。这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。要求学生抽空抄录并且阅读成诵。其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生

    8、、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。如此下去,除假期外,一年便可以积累40多则材料。如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?总之,数学思想方法是数学思维的核心,是学生学数学把知识转化成能力的纽带,在数学课的教学中,要有意识、有目的向学生传授数学思想方法,即在学习中总结出数学规律,并应用到解决实际问题中去,从而使学生的思维能力得以发展和提高。宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。至元明清之县学一律循之不变。明朝入选翰林院的进士之师称“教习”。到清末,学堂兴起,各科教师仍沿用“教习”一称。其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。而相应府和州掌管教育生员者则谓“教授”和“学正”。“教授”“学正”和“教谕”的副手一律称“训导”。于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:数学思想要在课堂教学中充分的体现.doc
    链接地址:https://www.ketangku.com/wenku/file-534443.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1