云南省保山曙光学校高二数学《113解三角形的进一步讨论》教学设计.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 113解三角形的进一步讨论
- 资源描述:
-
1、高考资源网() 您身边的高考专家1.1.3解三角形的进一步讨论一、内容及其解析本节课中,应先通过分析典型例题,帮助学生理解并掌握正弦定理和余弦定理;应指出正弦定理和余弦定理是相通的,凡是能用正弦定理解的三角形,用余弦定理也可以解,反之亦然但解题的时候,应有最佳选择教学过程中,我们应指导学生对利用正弦定理和余弦定理解斜三角形的问题进行归类,列表如下:解斜三角形时可用的定理和公式适用类型备注余弦定理a2=b2+c2-2bccosAb2=a2+c2-2accosBc2=b2+a2-2bacosC(1)已知三边(2)已知两边及其夹角类型(1)(2)有解时只有一解正弦定理(3)已知两角和一边(4)已知两
2、边及其中一边的对角类型(3)在有解时只有一解,类型(4)可有两解、一解或无解三角形面积公式(5)已知两边及其夹角同时应指出,在解斜三角形问题时,经常要利用正弦、余弦定理实施边角转换,转化的主要途径有两条:(1)化边为角,然后通过三角变换找出角与角之间的关系,进而解决问题;(2)化角为边,将三角问题转化为代数问题加以解决一般地,当已知三角形三边或三边数量关系时,常用余弦定理;若既有角的条件,又有边的条件,通常利用正弦定理或余弦定理,将边化为角的关系,利用三角函数公式求解较为简便总之,关键在于灵活运用定理及公式二、目标及其解析1.掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解
3、等情形;2.三角形各种形状的判定方法;3.三角形面积定理的应用教具准备 投影仪、幻灯片第一张:课题引入图片(记作113A)正弦定理:;余弦定理:a2=b2+c2-2bccosA,b2=c2+a2-2cacosB,c2=a2+b2-2abcosC,, ,.第二张:例3、例4(记作113B) 例3已知ABC, BD为角B的平分线,求证: ABBCADDC. 例4在ABC中,求证:a2sin2B+b2sin2A=2absinC.第三张:例5(记作113C) 例5在ABC中,bcosA=acosB,试判断三角形的形状.三、问题诊断分析通过引导学生分析,解答三个典型例子,使学生学会综合运用正、余弦定理,
4、三角函数公式及三角形有关性质求解三角形问题通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系四、教学过程问题与题例师 前面两节课,我们一起学习了正弦定理、余弦定理的内容,并且接触了利用正、余弦定理解三角形的有关题型.下面,我们先来回顾一下正、余弦定理的内容 (给出幻灯片1.1.3A).从幻灯片大体可以看出,正弦定理、余弦定理实质上反映了三角形内的边角关系,运用定理可以进行边与角之间的转换,这一节,我们将通过例题分析来学习正、余弦定理的边角转换功能在判断三角形形状和证明三角恒等式时的应
5、用.推进新课思考:在ABC中,已知A=22cm,B=25cm,A=133,解三角形(由学生阅读课本第9页解答过程)从此题的分析我们发现,在已知三角形的两边及其中一边的对角解三角形时,在某些条件下会出现无解的情形下面进一步来研究这种情形下解三角形的问题【例1】在ABC中,已知A,B,A,讨论三角形解的情况.师 分析:先由可进一步求出B;则C =180-(A+B),从而.一般地,已知两边和其中一边的对角解三角形,有两解、一解、无解三种情况1.当A为钝角或直角时,必须ab才能有且只有一解;否则无解2.当A为锐角时,如果ab,那么只有一解;如果ab,那么可以分下面三种情况来讨论:(1)若absinA,
6、则有两解;(2)若a=bsinA,则只有一解;(3)若absinA,则无解(以上解答过程详见课本第9到第10页)师 注意在已知三角形的两边及其中一边的对角解三角形时,只有当A为锐角且bsinAab时,有两解;其他情况时则只有一解或无解(1)A为直角或钝角(2)A为锐角【例2】在ABC中,已知a =7,b=5,c =3,判断ABC的类型分析:由余弦定理可知a2=b2+c2A是直角ABC是直角三角形,a2b2+c2A是钝角ABC是钝角三角形,a2b2+cA是锐角/ABC是锐角三角形。(注意:A是锐角/ ABC是锐角三角形 )解:7252+32,即a2b2+c2,ABC是钝角三角形1利用正弦定理和三
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
