数学苏教版选修2-2互动课堂 1.3.2极值点 WORD版含解析.DOC
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学苏教版选修2-2互动课堂 1.3.2极值点 WORD版含解析 数学 苏教版 选修 互动 课堂 1.3 极值 WORD 解析
- 资源描述:
-
1、互动课堂疏导引导1.可导函数极值的概念 如图,观察图形,展示出图象在点(x1,f(x1)处的切线的变化. 不难得出:曲线在极值点处切线的斜率为0,曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正,得到可导函数极值的概念.疑难疏引 对此概念的几点说明如下:(1)函数f(x)在点x0及其附近有定义,是指在点x0及其左右邻域都有意义.(2)极值是一个局部概念,是仅对某一点的左右两侧邻域而言的.(3)函数的极值不是唯一的.即一个函数在某区间上或定义域内极大值或极小值可以不止一个.(4)极大值与极小值之间无确定的大小关系.即一个函数的极大值未必大于极小值,如下图所示
2、,x1是极大值点,x4是极小值点,而f(x4)f(x1)(5)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点.而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点. 由上图可以看出,在函数取得极值处,如果曲线有切线的话,则切线是水平的,从而有f(x)=0.但反过来不一定.如函数y=x3,在x=0处,曲线的切线是水平的,但这点的函数值既不比它附近的点的函数值大,也不比它附近的点的函数值小.假设x0使f(x)=0,那么x0在什么情况下是极值点呢? 如上图所示,若x0是f(x)的极大值点,则x0两侧附近点的函数值必须小于f(x0).因此,x0的左侧附近f(x)只能是增函数,
3、即f(x0)0.x0的右侧附近f(x)只能是减函数,即f(x0)0,同理,如下图所示,若x0是极小值点,则在x0的左侧附近f(x)只能是减函数,即f(x0)0,在x0的右侧附近f(x)只能是增函数,即f(x0)0,从而我们得出结论:若x0满足f(x0)=0,且在x0的两侧f(x)的导数异号,则x0是f(x)的极值点,f(x0)是极值,并且如果f(x0)在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果f(x0)在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值.2.求可导函数y=f(x)极值的步骤:(1)求导数f(x);(2)求方程f(x)
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
