数学苏教版选修4-4学案:知识导航 4-1-1直角坐标系 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学苏教版选修4-4学案:知识导航 4-1-1直角坐标系 WORD版含解析 数学 苏教版 选修 知识 导航 直角 坐标系 WORD 解析
- 资源描述:
-
1、4.1 坐标系4.1.1 直角坐标系自主整理1.坐标系是一个_,它是实现_与_互相转化的基础.答案:1.参照系 几何图形 代数形式2.建立坐标系是为了_,在所创建的坐标系中,应满足:任意一点都有_与它对应;反之,依据一个点的坐标就能_.答案:2.确定点的位置 确定的坐标 确定这个点的位置3.在数轴上,直线上所有点的集合与全体实数的集合建立_;在平面直角坐标系中,平面上所有点的集合与_的集合建立一一对应;在空间直角坐标系中,空间所有点的集合与_的集合建立一一对应.确定点的位置就是_.答案:3.一一对应 全体有序实数对(x,y) 全体由三个实数组成的有序实数组(x,y,z) 求出这个点在设定的坐标
2、系中的坐标高手笔记1.坐标系是解析几何的基础.在坐标系中,可以用有序实数对(组)确定点的位置,进而用方程刻画几何图形.为便于用代数的方法刻画几何图形或描述自然现象,需要建立不同的坐标系.2.平面和空间中点的位置都可以用有序数对(组),也就是坐标来刻画,在不同坐标系中,这些数所体现的几何含义不同.同一几何图形在不同坐标系中具有不同的形式.3.坐标系包括直角坐标系、极坐标系、柱坐标系、球坐标系等.对于不同类型的几何图形,选用相应的坐标系可以使建立的方程更加简单.如要确定体育馆内一个位置,建立柱坐标系就比较适合,通过柱坐标我们可以比较精确地找到这个位置的所在地.4.坐标法是在坐标系的基础上,把几何问
3、题转化成代数问题,通过代数运算研究几何图形性质的方法.它是解析几何中最基本的研究方法.例如在平面直角坐标系中,根据确定直线位置的几何要素,我们可以探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系.在空间坐标系中,通过高次方程的计算,使人们对一些星体的轨迹运动和变化规律有所了解和掌握.5.坐标法解决几何问题的“三步曲”:第一步:建立适当的坐标系,用坐标和方程表示问题中涉及的几何元素,将几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:把代数运算结果“翻译”成几何结论.6.坐标法在生活中的应用很广泛,如研究台风、寒流、沙暴中心的运动规律,可以帮助
4、人们预防自然灾害的发生等等.名师解惑1.建立坐标系可以解决哪些问题,它是如何体现数学思想的?剖析:坐标系是现代数学中的重要内容,它在数学发展的历史上,起过划时代的作用.坐标系的创建,在代数和几何之间架起了一座桥梁.利用坐标系,我们可以方便地用代数的方法确定平面内一个点的位置,也可以方便地确定空间内一个点的位置.它使几何概念得以用代数的方法来描述,几何图形可以通过代数形式来表达,这样便可将抽象的代数方程用形象的几何图形表示出来,又可将先进的代数方法应用于几何学的研究. 建立直角坐标系,数形结合,我们可以解决许多数学问题,如函数问题就常常需要借助直角坐标系来解决.而在其他领域,坐标系与物理、化学等
5、相关学科交织在一起,在日常生活中有着广泛的应用.如飞机航行、炮弹发射问题等等.我们生活中有这样一个例子:教室的墙壁上挂着一块黑板,它的上、下边缘分别在学生的水平视线上方a米和b米,那么学生距墙壁多远时看黑板最清楚(即所张的视角最大)? 我们就可以建立一个平面直角坐标系,运用三角的知识加以解决. 平面直角坐标系是进一步学习函数、三角及其他坐标系的必备基础知识. 我们画函数的图象、定义任意角的三角函数等许多知识都是与坐标系的建立紧密联系的,这就需要我们对各方面的知识扎实掌握,从而能得心应手地解决问题.2.建立直角坐标系的一般规律有哪些?剖析:一般情况下我们有这样一个建立直角坐标系的规律:(1)当题
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
