2022八年级数学上册 第十三章 轴对称测试卷(3)(新版)新人教版.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022八年级数学上册 第十三章 轴对称测试卷3新版新人教版 2022 八年 级数 上册 第十三 轴对称 测试 新版 新人
- 资源描述:
-
1、第13章 轴对称 一、选择题1如图,在矩形ABCD中,AB=10,BC=5若点M、N分别是线段AC,AB上的两个动点,则BM+MN的最小值为()A10B8C5D62如图,四边形ABCD中,C=50,B=D=90,E、F分别是BC、DC上的点,当AEF的周长最小时,EAF的度数为()A50B60C70D803如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:作点B关于直线l的对称点B;连接AB与直线l相交于点C,则点C为所求作的点在解决这个问题时没有运用到的知识或方法是()A转化思想B三角形的两边之和大于第三边C两点之间,线段最短D三角形的一个外角大于与它
2、不相邻的任意一个内角4如图,点P是AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,PMN周长的最小值是5cm,则AOB的度数是()A25B30C35D405如图,正方形ABCD的面积为12,ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为()AB2C2D6如图,在RtABC中,C=90,AC=6,BC=8,D是AB上的动点,E是BC上的动点,则AE+DE的最小值为()A3+2B10CD7如图,AB是O的直径,AB=8,点M在O上,MAB=20,N是弧MB的中点,P是直径AB上的一动点若MN=1,则PMN周长的最小值
3、为()A4B5C6D78如图,MN是半径为1的O的直径,点A在O上,AMN=30,点B为劣弧AN的中点P是直径MN上一动点,则PA+PB的最小值为()AB1C2D29如图,在RtABC中,ACB=90,AC=6,BC=8,AD是BAC的平分线若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()AB4CD5二、填空题10如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是11如图,在边长为2的等边ABC中,D为BC的中点,E是AC边上一点,则BE+DE的最小值为12如图,A
4、OB=30,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是13在每个小正方形的边长为1的网格中点A,B,C,D均在格点上,点E、F分别为线段BC、DB上的动点,且BE=DF()如图,当BE=时,计算AE+AF的值等于()当AE+AF取得最小值时,请在如图所示的网格中,用无刻度的直尺,画出线段AE,AF,并简要说明点E和点F的位置如何找到的(不要求证明)14如图,正方形ABCD的边长为4,E为BC上一点,BE=1,F为AB上一点,AF=2,P为AC上一点,则PF+PE的最小值为15如图,AOB=30,点M、N分别是射线OA、OB上的
5、动点,OP平分AOB,且OP=6,当PMN的周长取最小值时,四边形PMON的面积为16在O中,AB是O的直径,AB=8cm,=,M是AB上一动点,CM+DM的最小值是cm17如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD上移动,则PE+PC的最小值是18如图,菱形ABCD的边长为2,DAB=60,E为BC的中点,在对角线AC上存在一点P,使PBE的周长最小,则PBE的周长的最小值为19如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则BEQ周长的最小值为20如图,菱形ABCD中,对角线AC=6,BD=8,M、N分别是BC、CD
6、的中点,P是线段BD上的一个动点,则PM+PN的最小值是21在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B(2,0)是x轴上的两点,则PA+PB的最小值为22菱形ABCD的边长为2,ABC=60,E是AD边中点,点P是对角线BD上的动点,当AP+PE的值最小时,PC的长是23如图,在平面直角坐标系中,已知点A(2,3),点B(2,1),在x轴上存在点P到A,B两点的距离之和最小,则P点的坐标是三、解答题24如图,在平面直角坐标系中,已知点A(0,3),B(2,4),C(4,0),D(2,3),E(0,4)写出D,C,B关于y轴对称点F,G,H的坐标,并画出F,G,H点
7、顺次而平滑地连接A,B,C,D,E,F,G,H,A各点观察你画出的图形说明它具有怎样的性质,它象我们熟知的什么图形?25如图,在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB和直线MN,点A,B,M,N均在小正方形的顶点上(1)在方格纸中画四边形ABCD(四边形的各顶点均在小正方形的顶点上),使四边形ABCD是以直线MN为对称轴的轴对称图形,点A的对称点为点D,点B的对称点为点C;(2)请直接写出四边形ABCD的周长26在图示的方格纸中(1)作出ABC关于MN对称的图形A1B1C1;(2)说明A2B2C2是由A1B1C1经过怎样的平移得到的?27如图,方格纸中每个小正方形的边长均为1
8、,四边形ABCD的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE(1)在图中画出AEF,使AEF与AEB关于直线AE对称,点F与点B是对称点;(2)请直接写出AEF与四边形ABCD重叠部分的面积28如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点,点P是x轴上的一个动点(1)求此抛物线的解析式;(2)当PA+PB的值最小时,求点P的坐标29作图题:(不要求写作法)如图,ABC在平面直角坐标系中,其中,点A、B、C的坐标分别为A(2,1),B(4,5),C(5,2)(1)作ABC关于直线l:x=1对称的A1B1C1,其中
9、,点A、B、C的对应点分别为A1、B1、C1;(2)写出点A1、B1、C1的坐标30如图,在边长为1的小正方形组成的1010网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A、B、C、D分别在网格的格点上(1)请你在所给的网格中画出四边形ABCD,使四边形ABCD和四边形ABCD关于直线l对称,其中点A、B、C、D分别是点A、B、C、D的对称点;(2)在(1)的条件下,结合你所画的图形,直接写出线段AB的长度参考答案与试题解析一、选择题1如图,在矩形ABCD中,AB=10,BC=5若点M、N分别是线段AC,AB上的两个动点,则BM+MN的最小值为()A
10、10B8C5D6【考点】轴对称-最短路线问题【分析】过B点作AC的垂线,使AC两边的线段相等,到E点,过E作EF垂直AB交AB于F点,EF就是所求的线段【解答】解:过B点作AC的垂线,使AC两边的线段相等,到E点,过E作EF垂直AB交AB于F点,AC=5,AC边上的高为2,所以BE=4ABCEFB,=,即=EF=8故选B【点评】本题考查最短路径问题,关键确定何时路径最短,然后运用勾股定理和相似三角形的性质求得解2如图,四边形ABCD中,C=50,B=D=90,E、F分别是BC、DC上的点,当AEF的周长最小时,EAF的度数为()A50B60C70D80【考点】轴对称-最短路线问题【专题】压轴题
11、【分析】据要使AEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A,A,即可得出AAE+A=HAA=50,进而得出AEF+AFE=2(AAE+A),即可得出答案【解答】解:作A关于BC和CD的对称点A,A,连接AA,交BC于E,交CD于F,则AA即为AEF的周长最小值作DA延长线AH,C=50,DAB=130,HAA=50,AAE+A=HAA=50,EAA=EAA,FAD=A,EAA+AAF=50,EAF=13050=80,故选:D【点评】本题考查的是轴对称最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知
12、得出E,F的位置是解题关键3如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:作点B关于直线l的对称点B;连接AB与直线l相交于点C,则点C为所求作的点在解决这个问题时没有运用到的知识或方法是()A转化思想B三角形的两边之和大于第三边C两点之间,线段最短D三角形的一个外角大于与它不相邻的任意一个内角【考点】轴对称-最短路线问题【分析】利用两点之间线段最短分析并验证即可即可【解答】解:点B和点B关于直线l对称,且点C在l上,CB=CB,又AB交l与C,且两条直线相交只有一个交点,CB+CA最短,即CA+CB的值最小,将轴对称最短路径问题利用线段的性质定理两
13、点之间,线段最短,体现了转化思想,验证时利用三角形的两边之和大于第三边故选D【点评】此题主要考查了轴对称最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点4如图,点P是AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,PMN周长的最小值是5cm,则AOB的度数是()A25B30C35D40【考点】轴对称-最短路线问题【专题】压轴题【分析】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=DM,OP=OC,COA
14、=POA;PN=DN,OP=OD,DOB=POB,得出AOB=COD,证出OCD是等边三角形,得出COD=60,即可得出结果【解答】解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:点P关于OA的对称点为D,关于OB的对称点为C,PM=DM,OP=OD,DOA=POA;点P关于OB的对称点为C,PN=CN,OP=OC,COB=POB,OC=OP=OD,AOB=COD,PMN周长的最小值是5cm,PM+PN+MN=5,DM+CN+MN=5,即CD=5=OP,OC=OD=CD,即OCD是等边三角形,COD=60,AOB=3
15、0;故选:B【点评】本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键5如图,正方形ABCD的面积为12,ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为()AB2C2D【考点】轴对称-最短路线问题;正方形的性质【分析】由于点B与D关于AC对称,所以BE与AC的交点即为P点此时PD+PE=BE最小,而BE是等边ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果【解答】解:由题意,可得BE与AC交于点P点B与D关于AC对称,PD=PB,PD+
16、PE=PB+PE=BE最小正方形ABCD的面积为12,AB=2又ABE是等边三角形,BE=AB=2故所求最小值为2故选B【点评】此题考查了轴对称最短路线问题,正方形的性质,等边三角形的性质,找到点P的位置是解决问题的关键6如图,在RtABC中,C=90,AC=6,BC=8,D是AB上的动点,E是BC上的动点,则AE+DE的最小值为()A3+2B10CD【考点】轴对称-最短路线问题【分析】作点A关于BC的对称点A,过点A作ADAB交BC、AB分别于点E、D,根据轴对称确定最短路线问题,AD的长度即为AE+DE的最小值,利用勾股定理列式求出AB,再利用ABC的正弦列式计算即可得解【解答】解:如图,
17、作点A关于BC的对称点A,过点A作ADAB交BC、AB分别于点E、D,则AD的长度即为AE+DE的最小值,AA=2AC=26=12,ACB=90,BC=8,AC=6,AB=10,sinBAC=,AD=AAsinBAC=12=,即AE+DE的最小值是故选D【点评】本题考查了利用轴对称确定最短路线问题,主要利用了勾股定理,垂线段最短,锐角三角函数的定义,难点在于确定出点D、E的位置7如图,AB是O的直径,AB=8,点M在O上,MAB=20,N是弧MB的中点,P是直径AB上的一动点若MN=1,则PMN周长的最小值为()A4B5C6D7【考点】轴对称-最短路线问题;圆周角定理【专题】压轴题【分析】作N
18、关于AB的对称点N,连接MN,NN,ON,ON,由两点之间线段最短可知MN与AB的交点P即为PMN周长的最小时的点,根据N是弧MB的中点可知A=NOB=MON=20,故可得出MON=60,故MON为等边三角形,由此可得出结论【解答】解:作N关于AB的对称点N,连接MN,NN,ON,ONN关于AB的对称点N,MN与AB的交点P即为PMN周长的最小时的点,N是弧MB的中点,A=NOB=MON=20,MON=60,MON为等边三角形,MN=OM=4,PMN周长的最小值为4+1=5故选:B【点评】本题考查的是轴对称最短路径问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来
19、解决,多数情况要作点关于某直线的对称点8如图,MN是半径为1的O的直径,点A在O上,AMN=30,点B为劣弧AN的中点P是直径MN上一动点,则PA+PB的最小值为()AB1C2D2【考点】轴对称-最短路线问题;勾股定理;垂径定理【分析】作点B关于MN的对称点B,连接OA、OB、OB、AB,根据轴对称确定最短路线问题可得AB与MN的交点即为PA+PB的最小时的点,根据在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍求出AON=60,然后求出BON=30,再根据对称性可得BON=BON=30,然后求出AOB=90,从而判断出AOB是等腰直角三角形,再根据等腰直角三角形的性质可得AB=OA,即为PA
20、+PB的最小值【解答】解:作点B关于MN的对称点B,连接OA、OB、OB、AB,则AB与MN的交点即为PA+PB的最小时的点,PA+PB的最小值=AB,AMN=30,AON=2AMN=230=60,点B为劣弧AN的中点,BON=AON=60=30,由对称性,BON=BON=30,AOB=AON+BON=60+30=90,AOB是等腰直角三角形,AB=OA=1=,即PA+PB的最小值=故选:A【点评】本题考查了轴对称确定最短路线问题,在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍的性质,作辅助线并得到AOB是等腰直角三角形是解题的关键9如图,在RtABC中,ACB=90,AC=6,BC=8,A
21、D是BAC的平分线若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()AB4CD5【考点】轴对称-最短路线问题【分析】过点C作CMAB交AB于点M,交AD于点P,过点P作PQAC于点Q,由AD是BAC的平分线得出PQ=PM,这时PC+PQ有最小值,即CM的长度,运用勾股定理求出AB,再运用SABC=ABCM=ACBC,得出CM的值,即PC+PQ的最小值【解答】解:如图,过点C作CMAB交AB于点M,交AD于点P,过点P作PQAC于点Q,AD是BAC的平分线PQ=PM,这时PC+PQ有最小值,即CM的长度,AC=6,BC=8,ACB=90,AB=10SABC=ABCM=ACBC,CM=,
22、即PC+PQ的最小值为故选:C【点评】本题主要考查了轴对称问题,解题的关键是找出满足PC+PQ有最小值时点P和Q的位置二、填空题10如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是3【考点】轴对称-最短路线问题;正方形的性质【专题】计算题;压轴题【分析】根据最短路径的求法,先确定点E关于BC的对称点E,再确定点A关于DC的对称点A,连接AE即可得出P,Q的位置;再根据相似得出相应的线段长从而可求得四边形AEPQ的面积【解答】解:如图1所示,作E关于BC的对称点E,点A关于DC
23、的对称点A,连接AE,四边形AEPQ的周长最小,AD=AD=3,BE=BE=1,AA=6,AE=4DQAE,D是AA的中点,DQ是AAE的中位线,DQ=AE=2;CQ=DCCQ=32=1,BPAA,BEPAEA,=,即=,BP=,CP=BCBP=3=,S四边形AEPQ=S正方形ABCDSADQSPCQSBEP=9ADDQCQCPBEBP=93211=,故答案为:【点评】本题考查了轴对称,利用轴对称确定A、E,连接AE得出P、Q的位置是解题关键,又利用了相似三角形的判定与性质,图形分割法是求面积的重要方法11如图,在边长为2的等边ABC中,D为BC的中点,E是AC边上一点,则BE+DE的最小值为
24、【考点】轴对称-最短路线问题;等边三角形的性质【分析】作B关于AC的对称点B,连接BB、BD,交AC于E,此时BE+ED=BE+ED=BD,根据两点之间线段最短可知BD就是BE+ED的最小值,故E即为所求的点【解答】解:作B关于AC的对称点B,连接BB、BD,交AC于E,此时BE+ED=BE+ED=BD,根据两点之间线段最短可知BD就是BE+ED的最小值,B、B关于AC的对称,AC、BB互相垂直平分,四边形ABCB是平行四边形,三角形ABC是边长为2,D为BC的中点,ADBC,AD=,BD=CD=1,BB=2AD=2,作BGBC的延长线于G,BG=AD=,在RtBBG中,BG=3,DG=BGB
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
