数学:《含参不等式恒成立问题的求解策略》教学论文.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 含参不等式恒成立问题的求解策略
- 资源描述:
-
1、含参不等式恒成立问题的求解策略 “含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。另一方面,在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用。本文就结合实例谈谈这类问题的一般求解策略。一、判别式法若所求问题可转化为二次不等式,则可考虑应用判别式法解题。一般地,对于二次函数,有1)对恒成立; 2)对恒成立 例1已知函数的定义域为R,求实数的取值范围。解:由题设可将问题转化为不等式对恒成立,
2、即有解得。所以实数的取值范围为。若二次不等式中的取值范围有限制,则可利用根的分布解决问题。例2设,当时,恒成立,求实数的取值范围。解:设,则当时,恒成立Oxyx-1当时,显然成立;当时,如图,恒成立的充要条件为:解得。综上可得实数的取值范围为。二、最值法 将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有:1)恒成立2)恒成立例3已知,当时,恒成立,求实数的取值范围。解:设,则由题可知对任意恒成立令,得而即实数的取值范围为。例4函数,若对任意,恒成立,求实数的取值范围。解:若对任意,恒成立,即对,恒成立,考虑到不等式的分母,只需在时恒成立而得而抛物线在的最小值得注:本题还可将变
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
