河北省衡水中学2020届高三数学上学期五调考试试题 理(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河北省衡水中学2020届高三数学上学期五调考试试题 理含解析 河北省 衡水 中学 2020 届高三 数学 上学 期五调 考试 试题 解析
- 资源描述:
-
1、河北省衡水中学2020届高三数学上学期五调考试试题 理(含解析)一、选择题(本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知,则( )A. B. C. D. 【答案】C【解析】【分析】由三角函数的诱导公式求得,再由余弦的倍角公式,即可求解.【详解】由三角函数的诱导公式,可得,即,又由.【点睛】本题主要考查了三角函数的化简求值问题,其中解答中熟练应用三角函数的诱导公式和余弦的倍角公式是解答的关键,着重考查了推理与运算能力,属于基础题.2.等差数列的前项和为,若,则等于( )A. B. C. D. 【答案】B【解析】【分析】根据成等差数列列方程组,解
2、方程求得的值.【详解】由于是等差数列,故成等差数列,所以,即,解得.故选B.【点睛】本小题主要考查等差数列前项和的性质,考查方程的思想,属于基础题.3.2019年是新中国成立七十周年,新中国成立以来,我国文化事业得到了充分发展,尤其是党的十八大以来,文化事业发展更加迅速,下图是从2013 年到 2018 年六年间我国公共图书馆业机构数(个)与对应年份编号的散点图(为便于计算,将 2013 年编号为 1,2014 年编号为 2,2018年编号为 6,把每年的公共图书馆业机构个数作为因变量,把年份编号从 1 到 6 作为自变量进行回归分析),得到回归直线,其相关指数,给出下列结论,其中正确的个数是
3、( )公共图书馆业机构数与年份的正相关性较强 公共图书馆业机构数平均每年增加13.743个 可预测 2019 年公共图书馆业机构数约为3192个A. 0B. 1C. 2D. 3【答案】D【解析】【分析】根据和确定是正相关还是负相关以及相关性的强弱;根据的值判断平均每年增加量;根据回归直线方程预测年公共图书馆业机构数.【详解】由图知点散布在从左下角到右上角的区域内,所以为正相关,又趋近于1,所以相关性较强,故正确;由回归方程知正确;由回归方程,当时,得估计值为3191.93192,故正确.故选D.【点睛】回归直线方程中的大小和正负分别决定了单位增加量以及相关型的正负;相关系数决定了相关性的强弱,
4、越接近相关性越强.4.函数的部分图象大致是()A. B. C. D. 【答案】A【解析】【分析】根据函数的奇偶性及时,进行排除即可得解.【详解】因为,所以,所以是奇函数,图象关于原点对称,所以B,D错误,当时,所以C错误.故选A.【点睛】本题主要考查了识别函数图像,一般从以下几个方面进行选择即可:奇偶性,定义域,特殊值,极限值,属于基础题.5.已知,为椭圆的两个焦点,为椭圆短轴的一个端点,则椭圆的离心率的取值范围为( )A. B. C. D. 【答案】C【解析】【分析】用表示出,解出不等式得出的范围.【详解】由椭圆定义可知:,则,所以,因为,即,即.【点睛】本题主要考查了椭圆的几何性质,平面向
5、量的数量积运算,属于中档题.6.若的展开式中的系数为,则实数的值为A. B. 2C. 3D. 4【答案】B【解析】【分析】将三项的多项式的幂的形式组合成两项的幂的形式,运用两次二项式展开式的通项公式得出的通项公式,令,解此不定方程得出t,r的值,得到关于a的方程,可得解.【详解】,所以的展开式的通项为,其中,令,所以或,当时,的系数为,当时,的系数为,因为的系数为,所以,即,即,所以故选B.【点睛】本题考查二项式展开式中的特定项的系数,本题关键在于将底数的三项式,组合成二项,运用二项式展开式的通项,建立方程求解,属于中档题.7.现有四名高三学生准备高考后到长三角城市群(包括:上海市以及江苏省、
6、浙江省、安徽省三省部分城市,简称“三省一市”)旅游,假设每名学生均从上海市、江苏省、浙江省、安徽省这四个地方中随机选取一个去旅游,则恰有一个地方未被选中的概率为( )A. B. C. D. 【答案】B【解析】【分析】四名学生随意选择共256种选法,恰有一个地方未被选中共144种,所以其概率为.【详解】四名学生从四个地方任选一个共有种选法,恰有一个地方未被选中,即有两位学生选了同一个地方,另外两名学生各去一个地方,考虑先分堆在排序共有种,所以恰有一个地方未被选中的概率为.故选:B【点睛】此题考查根据古典概型求概率,关键在于准确求出基本事件总数和某一事件包含的基本事件个数,其本质是利用排列组合知识
7、解决计数问题.8.已知定义在上的函数,则,的大小关系为( )A. B. C. D. 【答案】D【解析】【分析】先判断函数在时的单调性,可以判断出函数是奇函数,利用奇函数的性质可以得到,比较三个数的大小,然后根据函数在时的单调性,比较出三个数的大小.【详解】当时,函数在时,是增函数.因为,所以函数是奇函数,所以有,因为,函数在时,是增函数,所以,故本题选D.【点睛】本题考查了利用函数的单调性判断函数值大小问题,判断出函数的奇偶性、单调性是解题的关键.9.鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的
8、十字立方体,其上下、左右、前后完全对称,从外表上看,六根等长的正四棱柱分成三组,经榫卯起来,如图,若正四棱柱的高为,底面正方形的边长为,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为( )(容器壁的厚度忽略不计)A. B. C. D. 【答案】C【解析】【分析】根据题意可知,当该球为底面边长分别为、,高为的长方体的外接球时,球的半径取最小值,然后利用公式可计算出球体的表面积.【详解】由题意知,当该球为底面边长分别为、,高为的长方体的外接球时,球的半径取最小值,所以,该球形容器的半径的最小值为,因此,该球形容器的表面积的最小值为.故选C.【点睛】本题考查长方体的外接球,解题的关键
9、就是要弄清楚球为长方体的外接球时,球的半径最小,考查空间想象能力与计算能力,属于中等题.10.已知定义在上的偶函数对任意都有,当取最小值时,的值为( )A. 1B. C. D. 【答案】A【解析】【分析】根据辅助角公式化简由函数为偶函数求出,再由,求出,将代入表达式即可求解.【详解】,因为函数为偶函数, 所以,即,又因为都有,可得: 所以,解得 所以,且取最小值,所以 综上可得,故选:A【点睛】本题考查了辅助角公式、诱导公式以及三角函数的奇偶性,属于中档题11.不等式解集中有且仅含有两个整数,则实数的取值范围是( )A. B. C. D. 【答案】C【解析】【分析】设,通过导数判断的单调性,结
10、合直线恒过定点,得到两函数的图象,结合题意得不等式组,解出即可.【详解】由题意可知,设,.由.可知在上为减函数,在上为增函数,的图象恒过点,在同一坐标系中作出,的图象如下,若有且只有两个整数,使得,且,则,即,解得,故选C.【点睛】本题主要考查了不等式与函数图象的关系,利用导数判断函数单调性,考查了学生的计算能力,属于中档题12.在正方体中,是棱的中点,是侧面内的动点,且平面,则与平面所成角的正切值构成的集合是( )A. B. C. D. 【答案】D【解析】【分析】为确定F点位置,先找过与平面平行且与平面相交的平面,分别取的中点,连接,可知平面平面,故F在线段上,可知线面角为,分析其正切值即可
11、求出.【详解】设平面与直线交于点,连接,则为的中点.分别取的中点,连接,则,平面,平面,平面,同理可得平面.是平面内的两条相交直线,平面平面,且平面,可得直线平面,即点是线段上的动点.设直线与平面所成角为,运动点并加以观察,可得:当点与点(或)重合时,与平面所成角等于,此时所成角达到最小值,满足;当点与中点重合时,与平面所成角达到最大值,此时,与平面所成角的正切值构成的集合为,故选D.【点睛】本题主要考查了面面平行的判定与性质,线面角,及线面角正切的最值问题,属于难题.二、填空题(本题共4小题,每小题5分,共20分)13.已知向量,向量与向量的夹角为,则_.【答案】7【解析】【分析】根据平面向
12、量的数量积公式可得.【详解】因为,所以,所以,所以.故答案为:7【点睛】本题考查了平面向量数量积,属于基础题.14.如图,正方体的棱长为1,过点作平面的垂线,垂足为点,有下面三个结论:点是的中心;垂直于平面;直线与直线所成的角是90.其中正确结论的序号是_.【答案】【解析】【分析】对于,先利用线面垂直的性质,结合已知条件,得到,进而可判断;对于,由已知条件,根据面面平行的判定定理,得到平面平面,再由垂直于平面,即可判断;对于,连接,根据线面垂直的判定定理,得到平面,即可得出,从而可判断【详解】对于,因为平面,所以,所以,所以是的外心;又因为是等边三角形,所以点是的中心.故正确;对于,因为,所以
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
小学三年级数学科第789单元测试卷.pdf
