分享
分享赚钱 收藏 举报 版权申诉 / 18

类型湖北省武汉市重点中学2014-2015学年高一上学期12月月考数学试卷 WORD版含答案.doc

  • 上传人:a****
  • 文档编号:567358
  • 上传时间:2025-12-10
  • 格式:DOC
  • 页数:18
  • 大小:304KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    湖北省武汉市重点中学2014-2015学年高一上学期12月月考数学试卷 WORD版含答案 湖北省 武汉市 重点中学 2014 2015 学年 上学 12 月月 数学试卷 WORD 答案
    资源描述:

    1、湖北省武汉市重点中学2014-2015学年高一上学期12月月考数学试卷一、选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有一项是符合题目要求的1(5分)已知集合A=y|y=log3x,x1,B=y|y=,x1,则AB=()ABy|0y1CD2(5分)扇形的周长为6cm,面积是2cm2,则扇形的圆心角的弧度数是()A1B4C1或4D2或43(5分)已知函数f (x)=asinx+btanx+1,满足f (5)=7,则f (5)的值为()A5B5C6D64(5分)下列说法正确的个数是()正切函数在定义域上单调递增;函数f(x)在区间(a,b)上满足f(a)f(b)0,则

    2、函数f(x)在(a,b)上有零点;的图象关于原点对称;若一个函数是周期函数,那么它一定有最小正周期A0个B1个C2个D3个5(5分)一种放射性元素,最初的质量为500g,按每年10%衰减这种放射性元素的半衰期(剩留量为最初质量的一半所需的时间叫做半衰期)是(精确到0.1已知lg2=0.3010,lg3=0.4771)()A52B6.6C71D836(5分)若ABC为锐角三角形,则下列不等式中一定能成立的是()AlogcosC0BlogcosC0ClogsinC0DlogsinC07(5分)已知=5,那么tan的值为()A2B2CD8(5分)已知,则的值是()ABC2D29(5分)函数的图象大致

    3、是()ABCD10(5分)定义在R上的函数满足f(x)=f(x+2),当x1,3时,f(x)=2|x2|,则()ABf (sin1)f (cos1)CDf (cos2)f (sin2)二、填空题:本大题共5小题,每小题5分,共25分请将答案填在答题卡对应题号的位置上答错位置,书写不清,模棱两可均不得分11(5分)函数的图象恒过定点P,P在幂函数f(x)的图象上,则f(9)=12(5分)函数在区间0,n上至少取得2个最大值,则正整数n的最小值是 13(5分)已知ax|()xx=0,则f(x)=loga(x22x3)的减区间为14(5分)声强级L1(单位:dB)由公式:给出,其中I为声强(单位:W

    4、/m2)(1)一般正常人听觉能忍受的最高声强为1W/m2,能听到的最低声强为1012W/m2则人听觉的声强级范围是(2)平时常人交谈时的声强约为106W/m2,则其声强级为15(5分)已知xR,符号x表示不超过x的最大整数,若函数f(x)=(x0),则给出以下四个结论:函数f(x)的值域为0,1;函数f(x)的图象是一条曲线;函数f(x)是(0,+)上的减函数;函数g(x)=f(x)a有且仅有3个零点时其中正确的序号为三、解答题:本大题共6小题,共75分解答应写出文字说明、证明过程或演算步骤16(12分)f(x)=的定义域为A,关于x的不等式22ax2a+x的解集为B,求使AB=A的实数a的取

    5、值范围17(12分)(1)已知角的终边上有一点P(x,1)(x0),且tan=x,求sin,cos;(2)已知函数f(x)=,设tan=,求f()的值18(14分)函数(A0,0)的最大值为3,其图象相邻两条对称轴之间的距离为,(1)求函数f(x)的解析式;(2)设,则,求的值19(12分)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v(单位:千克/年)是养殖密度x(单位:尾/立方米)的函数当x不超过4(尾/立方米)时,v的值为2(千克/年);当4x20时,v是x的一次函数;当x达到20(尾/立方米)时,因缺氧等原

    6、因,v的值为0(千克/年)(1)当0x20时,求函数v(x)的表达式;(2)当养殖密度x为多大时,鱼的年生长量(单位:千克/立方米)f(x)=xv(x)可以达到最大,并求出最大值20(13分)已知指数函数y=g(x)满足:g(2)=4,定义域为R的函数f(x)=是奇函数(1)确定y=g(x)的解析式;(2)求m,n的值;(3)若对任意的tR,不等式f(t22t)+f(2t2k)0恒成立,求实数k的取值范围21(12分)设角(0,),f(x)的定义域为0,1,f(0)=0,f(1)=1,当xy时,有f()=f(x)sin+(1sin)f(y)(1)求f()、f()的值;(2)求的值;(3)设g(

    7、x)=4sin(2x+)1,且lgg(x)0,求g(x)的单调区间湖北省武汉市重点中学2014-2015学年高一上学期12月月考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有一项是符合题目要求的1(5分)已知集合A=y|y=log3x,x1,B=y|y=,x1,则AB=()ABy|0y1CD考点:交集及其运算 专题:函数的性质及应用;集合分析:根据对数函数、指数函数的单调性分别求出集合A、B,再由交集的运算求出AB解答:解:因为y=log3x在定义域上是增函数,且x1,所以y0,则集合A=y|y0,因为y=在定义域上是增函数,且x1,

    8、所以0y,则集合B=y|0y,则AB=y|0y,故选:A点评:本题考查交集及其运算,以及对数函数、指数函数的单调性,属于基础题2(5分)扇形的周长为6cm,面积是2cm2,则扇形的圆心角的弧度数是()A1B4C1或4D2或4考点:扇形面积公式 专题:计算题;方程思想分析:设出扇形的圆心角为rad,半径为Rcm,根据扇形的周长为6 cm,面积是2 cm2,列出方程组,求出扇形的圆心角的弧度数解答:解:设扇形的圆心角为rad,半径为Rcm,则,解得=1或=4选C点评:本题考查扇形面积公式,考查方程思想,考查计算能力,是基础题3(5分)已知函数f (x)=asinx+btanx+1,满足f (5)=

    9、7,则f (5)的值为()A5B5C6D6考点:函数奇偶性的性质 专题:函数的性质及应用分析:利用函数奇偶性特征,求出f(x)+f(x)的值,再利用f(5)的值求出f(5)的值,得到本题结论解答:解:函数f(x)=asinx+btanx+1,f(x)=asin(x)+btan(x)+1=asinxbtanx+1,f(x)+f(x)=2,f(5)+f(5)=2f(5)=7,f(5)=5故选B点评:本题考查了函数的奇偶性,本题难度不大,属于基础题4(5分)下列说法正确的个数是()正切函数在定义域上单调递增;函数f(x)在区间(a,b)上满足f(a)f(b)0,则函数f(x)在(a,b)上有零点;的

    10、图象关于原点对称;若一个函数是周期函数,那么它一定有最小正周期A0个B1个C2个D3个考点:命题的真假判断与应用 专题:函数的性质及应用;简易逻辑分析:由正切函数的图象可知正确函数在整个定义域上不单调,有无数个单调增区间;若f(a)f(b)0,但函数在两端点处不连续,则不一定在(a,b)上有零点;由定义判断出是奇函数说明正确;举例说明错误解答:解:正切函数在定义域上单调递增,错误,正确函数在整个定义域上不单调,有无数个单调增区间;函数f(x)在区间(a,b)上满足f(a)f(b)0,则函数f(x)在(a,b)上有零点,错误,若函数在两端点处不连续,则不一定在(a,b)上有零点;函数的定义域为R

    11、,且=f(x),f(x)为奇函数,图象关于原点对称,正确;若一个函数是周期函数,那么它一定有最小正周期,错误,例如常数函数f(x)=1是周期函数,但无最小正周期正确的命题是故选:B点评:本题考查了命题的真假判断与应用,考查了函数的性质,考查了函数零点的判定方法,是中档题5(5分)一种放射性元素,最初的质量为500g,按每年10%衰减这种放射性元素的半衰期(剩留量为最初质量的一半所需的时间叫做半衰期)是(精确到0.1已知lg2=0.3010,lg3=0.4771)()A52B6.6C71D83考点:根据实际问题选择函数类型 专题:应用题分析:设所需的年数为x,得方程,两边取对数,再用换底公式变形

    12、,代入已知数据可得x的近似值,四舍五入即可得出正确答案解答:解:设该元素的质量衰减到一半时所需要的年数为x,可得化简,得即6.6故选B点评:本题以实际问题为载体,考查指数函数模型的构建,考查解指数方程,属于基础题6(5分)若ABC为锐角三角形,则下列不等式中一定能成立的是()AlogcosC0BlogcosC0ClogsinC0DlogsinC0考点:对数的运算性质 专题:函数的性质及应用分析:由锐角三角形ABC,可得1cosC0,0A,0B,利用正弦函数的单调性可得sinBsin(A)=cosA0,再利用对数函数的单调性即可得出解答:解:由锐角三角形ABC,可得1cosC0,0A,0B,0B

    13、,sinBsin(A)=cosA0,10,0故选:B点评:本题考查了锐角三角形的性质、锐角三角函数函数的单调性、对数函数的单调性等基础知识与基本技能方法,属于中档题7(5分)已知=5,那么tan的值为()A2B2CD考点:同角三角函数基本关系的运用 分析:已知条件给的是三角分式形式,且分子和分母都含正弦和余弦的一次式,因此,分子和分母都除以角的余弦,变为含正切的等式,解方程求出正切值解答:解:由题意可知:cos0,分子分母同除以cos,得=5,tan=故选D点评:同角三角函数的基本关系式揭示了同一个角三角函数间的相互关系,其主要应用于同角三角函数的求值和同角三角函数之间的化简和证明在应用这些关

    14、系式子的时候就要注意公式成立的前提是角对应的三角函数要有意义8(5分)已知,则的值是()ABC2D2考点:三角函数的化简求值 专题:计算题分析:利用化简得结果为1,进而根据的值,求得,则答案取倒数即可解答:解:=()=1=2=故选A点评:本题主要考查了三角函数的化简求值解题过程灵活利用了同角三角函数的基本关系,通过=1巧妙的解决了问题9(5分)函数的图象大致是()ABCD考点:函数的图象与图象变化 专题:数形结合分析:把函数写出分段函数,取得函数的单调性,结合图象即可得到结论解答:解:函数可化为f(x)=,所以函数当x0时,函数为增函数,当x0时,函数为减函数结合图象可知选C故选C点评:本题考

    15、查函数的化简,考查函数的单调性,考查数形结合的数学思想,属于基础题10(5分)定义在R上的函数满足f(x)=f(x+2),当x1,3时,f(x)=2|x2|,则()ABf (sin1)f (cos1)CDf (cos2)f (sin2)考点:函数的周期性 专题:函数的性质及应用分析:本题先通过条件当x1,3时的解析式,求出函数在1,1上的解析式,得到相应区间上的单调性,再利用函数单调性比较各选项中的函数值大小,得到本题结论解答:解:当x1,3时,f(x)=2|x2|,f(x)=f(x+2),当x1,1时,x+21,3,f(x)=f(x+2)=2|(x+2)2|=2|x|,f(x)=f(x)f(

    16、x)在1,1上的偶函数当x0时,f(x)=2x,f(x)在0,1上单调递减,cos20,0cos2sin2,f(cos2)=f(cos2)f(sin2)故选D点评:本题考查了函数的奇偶性和单调性及应用,本题难度不大,属于基础题二、填空题:本大题共5小题,每小题5分,共25分请将答案填在答题卡对应题号的位置上答错位置,书写不清,模棱两可均不得分11(5分)函数的图象恒过定点P,P在幂函数f(x)的图象上,则f(9)=考点:对数函数的图像与性质;幂函数的性质 专题:计算题分析:欲求函数的图象恒过什么定点,只要考虑对数函数f(x)=logax(a0,a1)的图象恒过什么定点即可知,故只须令x=2即得

    17、,再设f(x)=x,利用待定系数法求得即可得f(9)解答:解析:令,即;设f(x)=x,则,;所以,故答案为:点评:本题主要考查了对数函数的图象与性质,以及幂函数的性质,属于容易题主要方法是待定系数法12(5分)函数在区间0,n上至少取得2个最大值,则正整数n的最小值是 8考点:三角函数的周期性及其求法 专题:计算题分析:先根据函数的解析式求得函数的最小正周期,进而依据题意可推断出在区间上至少有个周期进而求得n6,求得n的最小值解答:解:周期T=6在区间0,n上至少取得2个最大值,说明在区间上至少有个周期6=所以,n正整数n的最小值是8故答案为8点评:本题主要考查了三角函数的周期性及其求法考查

    18、了考生对三角函数周期性的理解和灵活利用13(5分)已知ax|()xx=0,则f(x)=loga(x22x3)的减区间为(3,+)考点:函数的值域 专题:函数的性质及应用分析:本题可以先将已知集合时行化简,得到参数a的取值范围,再求出函数f(x)的定义域,根据复合函数单调性的判断规律,求出f(x)的单调区间,得到本题结论解答:解:()xx=0()x=x,当x1时,方程()x=x不成立,当x=1时,方程()x=x显然不成立,当x0时,方程()x0,方程()x=x不成立,当x=0时,方程()x=x显然不成立,0x1函数f(x)=loga(x22x3)中,x22x30,x1或x3当x(,1)时,y=x

    19、22x3单调递减,f(x)=loga(x22x3)单调递增;当x(3,+)时,y=x22x3单调递增,f(x)=loga(x22x3)单调递减f(x)=loga(x22x3)的减区间为(3,+)故答案为:(3,+)点评:本题考查了指数方程、函数的定义域、函数的单调性,本题难度不大,属于基础题14(5分)声强级L1(单位:dB)由公式:给出,其中I为声强(单位:W/m2)(1)一般正常人听觉能忍受的最高声强为1W/m2,能听到的最低声强为1012W/m2则人听觉的声强级范围是0,120(2)平时常人交谈时的声强约为106W/m2,则其声强级为60考点:对数的运算性质 专题:函数的性质及应用分析:

    20、(1)把I=1和1012分别代入,利用对数的运算法则计算即可得出(2)把I=106代入即可得出解答:解:(1)当I=1时,L1=10=120;当I=1012时,L1=10lg1=0人听觉的声强级范围是0,120(2)L1=10lg106=60故答案分别为:0,120,60点评:本题考查了对数的运算法则,属于基础题15(5分)已知xR,符号x表示不超过x的最大整数,若函数f(x)=(x0),则给出以下四个结论:函数f(x)的值域为0,1;函数f(x)的图象是一条曲线;函数f(x)是(0,+)上的减函数;函数g(x)=f(x)a有且仅有3个零点时其中正确的序号为考点:根的存在性及根的个数判断;函数

    21、单调性的判断与证明 专题:函数的性质及应用分析:通过举特例,可得、错误;数形结合可得正确,从而得出结论解答:解:由于符号x表示不超过x的最大整数,函数f(x)=(x0),取x=1.1,则x=2,f(x)=1,故不正确由于当0x1,x=0,此时f(x)=0;当1x2,x=1,此时f(x)=;当2x3,x=2,此时f(x)=,此时f(x)1,当3x4,x=3,此时f(x)=,此时g(x)1,当4x5,x=4,此时f(x)=,此时g(x)1,故f(x)的图象不会是一条曲线,且 f(x)不会是(0,+)上的减函数,故排除、函数g(x)=f(x)a有且仅有3个零点时,函数f(x)的图象和直线y=a有且仅

    22、有3个交点,此时,故正确,故答案为:点评:本题主要考查方程的根的存在性及个数判断,体现了化归与转化、数形结合的数学思想,属于基础题三、解答题:本大题共6小题,共75分解答应写出文字说明、证明过程或演算步骤16(12分)f(x)=的定义域为A,关于x的不等式22ax2a+x的解集为B,求使AB=A的实数a的取值范围考点:集合的包含关系判断及应用;函数的定义域及其求法 专题:计算题;分类讨论分析:根据题意,首先求出f(x)的定义域A,然后根据AB=A得到AB,此时分情况进行讨论最后综合所有情况解出实数a的取值范围解答:解:由得:1x2即:A=(1,2由2axa+x得(2a1)xa (*)又AB=A

    23、得AB当a时(*)式即x有得a2a1即:a1此时a 当a=时(*)式xR满足ABa时(*)式即x有2得a4a2即:a可知:a另解:(*)式(2a1)xa 记g(x)=(2a1)xaAB,x(1,2,g(x)0成立即:a点评:本题考查集合包含关系的基本应用,函数的定义域及应用,以及实数函数的单调性通过分情况进行讨论,得到想要的结论,属于基础题关键在于分清情况,不能漏掉本题也是易错题17(12分)(1)已知角的终边上有一点P(x,1)(x0),且tan=x,求sin,cos;(2)已知函数f(x)=,设tan=,求f()的值考点:任意角的三角函数的定义 专题:三角函数的求值分析:(1)由条件利用任

    24、意角的三角函数的定义,求出sin,cos的值(2)由条件利用诱导公式可得f(x)=1tanx,再结合tan=,求得f()=1tan 的值解答:解:(1)已知角的终边上有一点P(x,1)(x0),tanx=,再由tan=x,可得=x,求得 x=1由于r=|OP|=,当x=1时,cos=,sin=当x=1时,sin=,cos=(2)已知函数f(x)=1tanx,tan=,则f()=1tan=1+=点评:本题主要考查任意角的三角函数的定义,诱导公式的应用,体现了等价转化的数学思想,属于基础题18(14分)函数(A0,0)的最大值为3,其图象相邻两条对称轴之间的距离为,(1)求函数f(x)的解析式;(

    25、2)设,则,求的值考点:由y=Asin(x+)的部分图象确定其解析式;三角函数的恒等变换及化简求值 专题:三角函数的图像与性质分析:(1)通过函数的最大值求出A,通过对称轴求出周期,求出,得到函数的解析式(2)通过,求出,通过的范围,求出的值解答:解:(1)函数f(x)的最大值为3,A+1=3,即A=2,函数图象相邻两条对称轴之间的距离为,=,T=,所以=2故函数的解析式为y=2sin(2x)+1(2),所以,点评:本题考查由y=Asin(x+)的部分图象确定其解析式,三角函数的恒等变换及化简求值,考查计算能力19(12分)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点研究表明:“活水围

    26、网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v(单位:千克/年)是养殖密度x(单位:尾/立方米)的函数当x不超过4(尾/立方米)时,v的值为2(千克/年);当4x20时,v是x的一次函数;当x达到20(尾/立方米)时,因缺氧等原因,v的值为0(千克/年)(1)当0x20时,求函数v(x)的表达式;(2)当养殖密度x为多大时,鱼的年生长量(单位:千克/立方米)f(x)=xv(x)可以达到最大,并求出最大值考点:函数模型的选择与应用 专题:应用题;综合题分析:(1)由题意:当0x4时,v(x)=2当4x20时,设v(x)=ax+b,v(x)=ax+b在4,20是减函数,由已知得,能求出函

    27、数v(x)(2)依题意并由(1),得f(x)=,当0x4时,f(x)为增函数,由此能求出fmax(x)=f(4),由此能求出结果解答:解:(1)由题意:当0x4时,v(x)=2(2分)当4x20时,设v(x)=ax+b,显然v(x)=ax+b在4,20是减函数,由已知得,解得(4分)故函数v(x)=(6分)(2)依题意并由(1),得f(x)=,(8分)当0x4时,f(x)为增函数,故fmax(x)=f(4)=42=8(10分)当4x20时,f(x)=+,fmax(x)=f(10)=12.5(12分)所以,当0x20时,f(x)的最大值为12.5当养殖密度为10尾/立方米时,鱼的年生长量可以达到

    28、最大,最大值约为12.5千克/立方米(14分)点评:本题考查函数表达式的求法,考查函数最大值的求法及其应用,解题时要认真审题,注意函数有生产生活中的实际应用20(13分)已知指数函数y=g(x)满足:g(2)=4,定义域为R的函数f(x)=是奇函数(1)确定y=g(x)的解析式;(2)求m,n的值;(3)若对任意的tR,不等式f(t22t)+f(2t2k)0恒成立,求实数k的取值范围考点:函数解析式的求解及常用方法;奇偶性与单调性的综合 专题:计算题;综合题;转化思想分析:(1)根据指数函数y=g(x)满足:g(2)=4,即可求出y=g(x)的解析式;(2)由题意知f(0)=0,f(1)=f(

    29、1),解方程组即可求出m,n的值;(3)由已知易知函数f(x)在定义域f(x)在(,+)上为减函数我们可将f(t22t)+f(2t2k)0转化为一个关于实数t的不等式组,解不等式组,即可得到实数t的取值范围解答:解:(1)指数函数y=g(x)满足:g(2)=4,g(x)=2x;(2)由(1)知:f(x)=是奇函数因为f(x)是奇函数,所以f(0)=0,即,n=1;f(x)=,又由f(1)=f(1)知,m=2;(3)由(2)知f(x)=,易知f(x)在(,+)上为减函数又因f(x)是奇函数,从而不等式:f(t22t)+f(2t2k)0等价于f(t22t)f(2t2k)=f(k2t2),因f(x)

    30、为减函数,由上式推得:t22tk2t2,即对一切tR有:3t22tk0,从而判别式=4+12k0,解得:k点评:本题考查的知识点:待定系数法求指数函数的解析式,函数的奇偶性和函数单调性的性质,其中根据函数的单调性将f(t22t)+f(2t2k)0转化为一个关于实数t的不等式组是解答本题的关键,体现了转化的思想,考查了运算能力和灵活应用知识分析解决问题的能力,属中档题21(12分)设角(0,),f(x)的定义域为0,1,f(0)=0,f(1)=1,当xy时,有f()=f(x)sin+(1sin)f(y)(1)求f()、f()的值;(2)求的值;(3)设g(x)=4sin(2x+)1,且lgg(x

    31、)0,求g(x)的单调区间考点:抽象函数及其应用;三角函数中的恒等变换应用;正弦函数的图象 专题:函数的性质及应用;三角函数的图像与性质分析:(1)令x=1、y=0代入可得f();令x=、y=0代入可得f(),(2)令x=1、y=代入可得f(),再利用第(1)问的结果;(3)由lgg(x)0,得g(x)1,进一步不等式化为,结合正弦曲线求出单调区间解答:解:(1)(2)sin=3sin22sin3,解得sin=0或sin=1或sin=(0,),sin=,=(3)lgg(x)0,g(x)1,sin(2x+),+2k2x+2k,kZ由函数图象可知,g(x)的递增区间为+2k2x+2k,kx+k,kZ,故递增区间为k,+k(kZ);g(x)的递减区间为+2k2x+2k,+kx+k,kZ,故递减区间为+k,+k(kZ)点评:本题主要考查抽象函数的性质,同时考查三角函数的内容,本题根据抽象函数所给的条件利用赋值法是解决本题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:湖北省武汉市重点中学2014-2015学年高一上学期12月月考数学试卷 WORD版含答案.doc
    链接地址:https://www.ketangku.com/wenku/file-567358.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1