分享
分享赚钱 收藏 举报 版权申诉 / 21

类型湖北省武汉市�~口区2015_2016学年八年级数学上学期期中试题含解析.doc

  • 上传人:a****
  • 文档编号:568169
  • 上传时间:2025-12-10
  • 格式:DOC
  • 页数:21
  • 大小:904.50KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    湖北省 武汉市 口区 2015 _2016 学年 八年 级数 学期 期中 试题 解析
    资源描述:

    1、湖北省武汉市硚口区2015-2016学年八年级数学上学期期中试题一、选择题(共10小题,每小题3分,满分30分)1在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )ABCD2如图,过ABC的顶点A,作BC边上的高,以下作法正确的是( )ABCD3以下列每组长度的三条线段为边能组成三角形的是( )A2、3、6B2、4、6C2、2、4D6、6、64如图,点P是BAC的平分线AD上一点,PEAC于点E已知PE=3,则点P到AB的距离是( )A3B4C5D65BD是锐角等腰ABC腰上的高,A=40,则CBD的度数为( )A25B30C20D506如图,将两根钢条AA、BB的中点O连在一

    2、起,使AA、BB可以绕着点O自由转动,就做成了一个测量工件,由三角形全等得出AB的长等于内槽宽AB;那么判定OABOAB的理由是( )A边角边B角边角C边边边D角角边7如图,在33的正方形网格中由四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是( )AA点BB点CC点DD点8如图,ABC中,ABC,ACB的角平分线交于点O,过O点作MNBC分别交AB,AC于M,N两点,AB=7,AC=8,CB=9,则AMN的周长是( )A14B16C17D159如图,平面上到两两相交的三条直线a、b、c的距离都相等的点一

    3、共有( )A1个B4个C2个D3个10如图,AOB=30,M,N分别是边OA,OB上的定点,P、Q分别是边OB,OA上的动点,记AMP=1,ONQ=2,当MP+PQ+QN最小时,则关于1,2的数量关系正确的是( )A1+2=90B221=30C21+2=180D12=90二、填空题(共6小题,每小题3分,满分18分)11点M(1,2)关于x轴对称的点的坐标为_12从一个多边形的一个顶点出发,可以作7条对角线,则它是_边形,它的内角和为_,外角和为_13如图,点D在AC的垂直平分线上,ABCD,若D=130,则BAC的度数是_14如图,ABC中,ACB=90,CD是高,若A=30,BD=1,则B

    4、C=_,AD=_15如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长方形的边的夹角为45,第1次碰到长方形边上的点的坐标为(3,0),则第3次碰到长方形边上的点的坐标为_,第2015次碰到长方形边上的点的坐标为_16如图,在平面直角坐标系中,已知A(0,4),B(2,0),在第一象限内的点C,使ABC为面积最小的等腰直角三角形,则点C的坐标为_,最小面积为_三、解答题(共8小题,满分72分)17如图,ABCD,A=45,且OC=OE,求C的度数18一个等腰三角形的两条边长分别为5和10,求这个三角形的周长19如图,点B、C、E、F在同一直线上,B

    5、C=EF,ACBC于点C,DFEF于点F,AC=DF求证:(1)ABCDEF;(2)ABDE20如图,点E在AB上,CEB=BACD=ECB,D=A,求证:CD=CA21已知ABC在平面直角坐标系中的位置如图所示(1)画出ABC关于y轴对称的AB1C1;并写出B1的坐标;(2)将ABC向右平移8个单位,画出平移后的A1B2C2,并写出B2的坐标;(3)在(1)、(2)的基础上,写出AB1C1与A1B2C2有怎样的位置关系?(4)在y轴上有一点P,使得PB+PC最小,请画出点P,(用虚线保留画图的痕迹)22如图,等腰RtABC中,ACB=90,CA=CB,点D在AB上,AD=AC,BE直线CD于

    6、E(1)求BCD的度数;(2)求证:CD=2BE;(3)若点O是AB的中点,请直接写出三条线段CB、BD、CO之间的数量关系23已知点E在等边ABC的边AB上,点P在射线CB上,AE=BP(1)如图1,求证:AP=CE;(2)如图2,求证:PE=EC;(3)如图3,若AE=2BE,延长AP至点M使PM=AP,连接CM,求证:CM=CE;24CO是ACE的高,点B在OE上,OB=OA,AC=BE(1)如图1,求证:A=2E;(2)如图2,CF是ACE的角平分线求证:AC+AF=CE;判断三条线段CE、EF、OF之间的数量关系,并给出证明2015-2016学年湖北省武汉市硚口区八年级(上)期中数学

    7、试卷一、选择题(共10小题,每小题3分,满分30分)1在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )ABCD【考点】轴对称图形 【分析】根据轴对称图形的概念求解如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意故选:A【点评】本题主要考查轴对称图形的知识点确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合2如图,过ABC的顶点A,作BC边上的高,以下作法正确的是( )ABCD【考点

    8、】三角形的角平分线、中线和高 【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答【解答】解:为ABC中BC边上的高的是A选项故选A【点评】本题考查了三角形的角平分线、中线、高线,熟记高线的定义是解题的关键3以下列每组长度的三条线段为边能组成三角形的是( )A2、3、6B2、4、6C2、2、4D6、6、6【考点】三角形三边关系 【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析【解答】解:根据三角形的三边关系,知A、2+36,不能组成三角形;B、2+4=6,不能组成三角形;C、2+2=4,不能组成三角形;D、6

    9、+66,能够组成三角形故选D【点评】此题考查了三角形的三边关系判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数4如图,点P是BAC的平分线AD上一点,PEAC于点E已知PE=3,则点P到AB的距离是( )A3B4C5D6【考点】角平分线的性质 【分析】已知条件给出了角平分线、PEAC于点E等条件,利用角平分线上的点到角的两边的距离相等,即可求解【解答】解:利用角的平分线上的点到角的两边的距离相等可知点P到AB的距离是也是3故选:A【点评】本题主要考查了角平分线上的一点到角的两边的距离相等的性质做题时从已知开始思考,想到角平分线的性质可以顺利地解答本题5BD是锐角等腰ABC腰上的

    10、高,A=40,则CBD的度数为( )A25B30C20D50【考点】等腰三角形的性质 【分析】根据已知可求得两底角的度数,再根据三角形内角和定理不难求得DBC的度数【解答】解:AB=AC,A=40,ABC=ACB=70BD是AC边上的高,BDAC,CBD=9070=20故选C【点评】本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般6如图,将两根钢条AA、BB的中点O连在一起,使AA、BB可以绕着点O自由转动,就做成了一个测量工件,由三角形全等得出AB的长等于内槽宽AB;那么判定OABOAB的理由是( )A边角边B角边角C边边边D

    11、角角边【考点】全等三角形的应用 【分析】由于已知O是AA、BB的中点O,再加对顶角相等即可证明OABOAB,所以全等理由就可以知道了【解答】解:OAB与OAB中,AO=AO,AOB=AOB,BO=BO,OABOAB(SAS)故选A【点评】此题主要考查全等三角形的判定方法,此题利用了SAS,做题时要认真读图,找出有用的条件是十分必要的7如图,在33的正方形网格中由四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是( )AA点BB点CC点DD点【考点】关于x轴、y轴对称的点的坐标;坐标确定位置 【分析】以每个点

    12、为原点,确定其余三个点的坐标,找出满足条件的点,得到答案【解答】解:当以点B为原点时,A(1,1),C(1,1),则点A和点C关于y轴对称,符合条件,故选:B【点评】本题考查的是关于x轴、y轴对称的点的坐标和坐标确定位置,掌握平面直角坐标系内点的坐标的确定方法和对称的性质是解题的关键8如图,ABC中,ABC,ACB的角平分线交于点O,过O点作MNBC分别交AB,AC于M,N两点,AB=7,AC=8,CB=9,则AMN的周长是( )A14B16C17D15【考点】等腰三角形的判定与性质;平行线的性质 【分析】根据角平分线的定义可得ABO=OBC,再根据两直线平行,内错角相等可得OBC=BOM,从

    13、而得到ABO=BOM,根据等角对等边的性质可得BM=OM,同理可得CN=ON,然后求出AMN的周长=AB+AC,代入数据进行计算即可【解答】解:OB平分ABC,ABO=OBC,MNBC,OBC=BOM,ABO=BOM,BM=OM,同理可得CN=ON,AMN的周长=AM+MO+ON+AN=AM+BM+CN+AN=AB+AC,AB=7,AC=8,AMN的周长=7+8=15故选:D【点评】本题考查了等腰三角形的判定与性质,用到的知识点是等角对等边,两直线平行,内错角相等,熟记性质是解题的关键9如图,平面上到两两相交的三条直线a、b、c的距离都相等的点一共有( )A1个B4个C2个D3个【考点】角平分

    14、线的性质 【分析】根据角平分线上的点到角的两边距离相等解答即可【解答】解:如图,到三条直线a、b、c的距离都相等的点一共有4个故选B【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键,作出图形更形象直观10如图,AOB=30,M,N分别是边OA,OB上的定点,P、Q分别是边OB,OA上的动点,记AMP=1,ONQ=2,当MP+PQ+QN最小时,则关于1,2的数量关系正确的是( )A1+2=90B221=30C21+2=180D12=90【考点】轴对称-最短路线问题 【分析】如图,作M关于OB的对称点M,N关于OA的对称点N,连接MN交OA于Q,交OB于P,则MP+P

    15、Q+QN最小,根据外角的性质得到1=O+OPM,OPM=1O=130,由轴对称的性质得到OPM=OPM,OPM=QPN,于是得到QPN=1+30,由于3=O+2=30+2,NQN=QPN+2=130+2,QPN=23,即可得到结论【解答】解:如图,作M关于OB的对称点M,N关于OA的对称点N,连接MN交OA于Q,交OB于P,则MP+PQ+QN最小,1=O+OPM,OPM=1O=130,OPM=OPM,OPM=QPN,QPN=1+303=O+2=30+2,NQN=QPN+2=130+2,QPN=23,130+2=2(30+2),12=90故选D【点评】本题考查了轴对称最短路线问题,三角形的外角的

    16、性质,正确的作出图形是解题的关键二、填空题(共6小题,每小题3分,满分18分)11点M(1,2)关于x轴对称的点的坐标为(1,2)【考点】关于x轴、y轴对称的点的坐标 【分析】利用关于x轴对称点的性质,关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数即点P(x,y)关于x轴的对称点P的坐标是(x,y)【解答】解:点M(1,2)关于x轴对称的点的坐标为:(1,2)故答案为:(1,2)【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键12从一个多边形的一个顶点出发,可以作7条对角线,则它是十边形,它的内角和为1440,外角和为360【考点】多边形的对角线;多边形内角与

    17、外角 【分析】根据n边形从一个顶点出发可引出(n3)条对角线,可得n3=7,求出n的值,再根据n边形的内角和为(n2)180,代入公式就可以求出内角和,根据多边形的外角和等于360即可求解【解答】解:设多边形有n条边,则n3=7,解得n=10,故它是十边形,它的内角和为(102)180=1440,外角和等于360故答案为:十,1440,360【点评】本题考查了多边形的对角线,多边形的内角和及外角和定理,是需要熟记的内容,比较简单13如图,点D在AC的垂直平分线上,ABCD,若D=130,则BAC的度数是25【考点】线段垂直平分线的性质;平行线的性质 【分析】由点D在AC的垂直平分线上,根据线段

    18、垂直平分线的性质,可得AD=CD,又由D=130,即可求得DCA的度数,然后由ABCD,根据平行线的性质,求得BAC的度数【解答】解:点D在AC的垂直平分线上,AD=CD,D=130,DAC=DCA=25,ABCD,BAC=DCA=25故答案为:25【点评】此题考查了线段垂直平分线的性质、平行线的性质以及等腰三角形的性质注意垂直平分线上任意一点,到线段两端点的距离相等14如图,ABC中,ACB=90,CD是高,若A=30,BD=1,则BC=2,AD=3【考点】含30度角的直角三角形 【分析】根据三角形内角和定理求出B=60,BCD=30,根据含30角的直角三角形性质求出BC,再求出AB,即可得

    19、出答案【解答】解:在ACB中,ACB=90,A=30,B=60,CD是高,CDB=90,BCD=30,BD=1,BC=2BD=2,AB=2BC=4,%AD=41=3故答案为:2,3【点评】本题考查了三角形内角和定理和含30角的直角三角形性质的应用,能根据含30角的直角三角形性质得出BC=2BD和AB=2BC是解此题的关键15如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长方形的边的夹角为45,第1次碰到长方形边上的点的坐标为(3,0),则第3次碰到长方形边上的点的坐标为(8,3),第2015次碰到长方形边上的点的坐标为(1,4)【考点】规律型:点

    20、的坐标 【专题】规律型;探究型【分析】根据图形可以直接写出第3次碰到长方形边上的点的坐标,然后再根据题意画出图形观察规律,从而可以得出2015次碰到长方形边上的点的坐标【解答】解:根据题意,如下图示:根据图形可知,第3次碰到长方形边上的点的坐标为(8,3);通过上图观察可知,每碰撞6次回到始点20156=3355,第2015次碰到长方形边上的点的坐标为(1,4)故答案为:(8,3),(1,4)【点评】本题考查探究性的问题,关键是根据题意画出符合要求的图形,找出其中的规律16如图,在平面直角坐标系中,已知A(0,4),B(2,0),在第一象限内的点C,使ABC为面积最小的等腰直角三角形,则点C的

    21、坐标为(3,3),最小面积为5【考点】等腰直角三角形;坐标与图形性质 【分析】分别从当ABC=90,AB=BC时,当BAC=90,AB=AC时与当ACB=90,AC=BC时去分析求解,利用全等三角形的判定与性质,即可求得点C的坐标和三角形的面积【解答】解:当ACB=90,AC=BC时,过点C作CDy轴于D,CEx轴于EBCA=DCE=90,ACD=BCE,在ACD与BCE中,ACDBCE(AAS),CD=CE=OE,AD=BE,AB=2,AC=AB=,CE2+(CE2)2=AC2=10,解得CE=3或1(不合题意舍去)则点C坐标为(3,3),SABC=S正方形OECDSABO=33=5故答案为

    22、:(3,3),5【点评】此题考查了全等三角形的判定与性质、等腰直角三角形的性质,勾股定理,坐标与图形的性质,熟练掌握等腰直角三角形的性质是解题的关键三、解答题(共8小题,满分72分)17如图,ABCD,A=45,且OC=OE,求C的度数【考点】等腰三角形的性质;平行线的性质 【分析】利用平行可求得DOE,结合等腰三角形和外角的性质可求得C【解答】解:ABCD,DOE=BAE=45,OC=OE,C=E,又DOE=2C,C=22.5【点评】本题主要考查等腰三角形的性质及平行线的性质,掌握等边对等角是解题的关键,注意外角性质的利用18一个等腰三角形的两条边长分别为5和10,求这个三角形的周长【考点】

    23、等腰三角形的性质;三角形三边关系 【分析】分5是腰长与底边长两种情况讨论,由三角形的三边关系和三角形的周长求解即可【解答】解:5是腰长时,三角形的三边分别为5、5、10,5+5=10,此时不能组成三角形;5是底边长时,三角形的三边分别为5、10、10,此时能组成三角形,所以,周长=5+10+10=25综上所述,这个等腰三角形的周长是25【点评】本题考查了等腰三角形的性质、三角形的三边关系、三角形周长的计算;熟练掌握等腰三角形的性质,分情况讨论是解决问题的关键19如图,点B、C、E、F在同一直线上,BC=EF,ACBC于点C,DFEF于点F,AC=DF求证:(1)ABCDEF;(2)ABDE【考

    24、点】全等三角形的判定与性质;平行线的判定 【专题】证明题【分析】(1)由SAS容易证明ABCDEF;(2)由ABCDEF,得出对应角相等B=DEF,即可得出结论【解答】证明:(1)ACBC于点C,DFEF于点F,ACB=DFE=90,在ABC和DEF中,ABCDEF(SAS);(2)ABCDEF,B=DEF,ABDE【点评】本题考查了全等三角形的判定与性质、平行线的判定;熟练掌握全等三角形的判定与性质,证明三角形全等是解决问题的关键20如图,点E在AB上,CEB=BACD=ECB,D=A,求证:CD=CA【考点】全等三角形的判定与性质 【专题】证明题【分析】如图,首先证明ACB=DCE,这是解

    25、决问题的关键性结论;然后运用AAS公理证明ABCDEC,即可解决问题【解答】证明:B=CEB,CE=CB,ACB=ECB,ACD+ACE=ECB+ACE,即DCE=ACB,在CAB与CDE中,CABCDE(AAS),CD=CA【点评】该题主要考查了全等三角形的判定及其性质的应用问题;解题的关键是牢固掌握全等三角形的判定方法,这是灵活运用、解题的基础和关键21已知ABC在平面直角坐标系中的位置如图所示(1)画出ABC关于y轴对称的AB1C1;并写出B1的坐标;(2)将ABC向右平移8个单位,画出平移后的A1B2C2,并写出B2的坐标;(3)在(1)、(2)的基础上,写出AB1C1与A1B2C2有

    26、怎样的位置关系?(4)在y轴上有一点P,使得PB+PC最小,请画出点P,(用虚线保留画图的痕迹)【考点】作图-轴对称变换;轴对称-最短路线问题;作图-平移变换 【分析】(1)画出ABC关于y轴对称的AB1C1,并写出B1的坐标即可;(2)画出平移后的A1B2C2,并写出B2的坐标即可;(3)根据AB1C1与A1B2C2在坐标系内的位置即可得出结论;(4)连接CB1交y轴于点P,则P点即为所求【解答】解:(1)如图所示,B1(3,2);(2)如图所示,B2(5,2);(3)由图可知AB1C1与A1B2C2关于直线x=4对称;(4)如图,点P即为所求点【点评】本题考查的是作图轴对称变换,熟知图形轴

    27、对称的性质是解答此题的关键22如图,等腰RtABC中,ACB=90,CA=CB,点D在AB上,AD=AC,BE直线CD于E(1)求BCD的度数;(2)求证:CD=2BE;(3)若点O是AB的中点,请直接写出三条线段CB、BD、CO之间的数量关系【考点】全等三角形的判定与性质;等腰直角三角形 【分析】(1)根据等腰直角三角形的性质得出A=45,利用等腰三角形进行解答即可;(2)作AHCD于H,根据全等三角形的判定和性质解答即可;(3)过D作DHBC于点H,利用等腰直角三角形的性质证得RtCODRtCHD,得出CH=CO,进一步利用性质求得BC=CH+BH=CO+BD即可【解答】解:(1)等腰Rt

    28、ABC中,ACB=90,CA=CB,A=CBA=45,AD=AC,ACD=67.5,BCD=90ACD=22.5;(2)作AHCD于H,如图:BE直线CD于E,AC=AD,CD=2CH,BEC=AHC=90,BCE+DCA=HAC+DCA=90,BCE=CAH,在CBE与ACH中,CBEACH(AAS),CH=BE,即CD=2CH=2BE;(3)如图,过D作DHBC于点H,由(1)可知BCD=22.5,O是AB的中点,BCO=45,DCO=BCO=22.5,DO=DH,在RtCOD和RtCHD中,RtCODRtCHD,CH=CO,DBH=45,DHB=90,BH=BD,BC=CH+BH=CO+

    29、BD【点评】此题考查全等三角形的判定与性质,等腰直角三角形的性质,利用等腰三角形的角度与边之间的关系是解决问题的关键23已知点E在等边ABC的边AB上,点P在射线CB上,AE=BP(1)如图1,求证:AP=CE;(2)如图2,求证:PE=EC;(3)如图3,若AE=2BE,延长AP至点M使PM=AP,连接CM,求证:CM=CE;【考点】全等三角形的判定与性质;等边三角形的判定与性质 【分析】(1)根据等边三角形的性质和全等三角形的判定和性质证明即可;(2)在AC上截取AM=AE,连接EM,利用全等三角形的判定和性质解答即可;(3)在PB上截取PN=PC,利用全等三角形的判定和性质解答即可【解答

    30、】证明:(1)等边ABC,AB=AC,BAC=B=60,在ABP与CAE中,ABPCAE(SAS),AP=CE;(2)在AC上截取AM=AE,连接EM,如图2:AM=AE,A=60,AEM是等边三角形,BE=ABAE=ACAM=CM,EM=AE=PB,EMC=EBP=120,在PBE与EMC中,PBEEMC(SAS),PE=CE;(3)在PB上截取PN=PC,如图3:在MPC与NPA中,MPCNPA(SAS),MC=AN,AE=2BE,由(1)得BP=2PC,由BP=BN+PN=BN+PC=2PC,BN=PC,在ABN与ACP中,ABNACP,(SAS),AP=AN,AP=EC,MC=AN,C

    31、M=CE【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键24CO是ACE的高,点B在OE上,OB=OA,AC=BE(1)如图1,求证:A=2E;(2)如图2,CF是ACE的角平分线求证:AC+AF=CE;判断三条线段CE、EF、OF之间的数量关系,并给出证明【考点】全等三角形的判定与性质 【分析】(1)连接CB,根据等腰三角形的性质和三角形的外角性质解答即可;(2)在CE上截取CH=CA,连接FH,利用全等三角形的判定和性质解答即可;根据全等三角形的性质进行解答即可【解答】证明:(1)连接CB,由AO=OB,COAB,CA=CB,A=CBA,AC=BE,BE=CB,E=BCE,A=CBA=BCE+E=2E;(2)在CE上截取CH=CA,连接FH,ACF=ECF,CF=CF,在FCA与FCH中,FCAFCH,AF=HF,A=CHF=HFE+E=2E,HFE=E,AF=HE,即CE=CH+HE=CA+AF;在的基础上,BE=AC,AO=OB,CE=CA+AF=BE+AO+OF=EFFB+OB+OF=EF+OF+OF=EF+2OF【点评】此题考查了全等三角形的判定与性质和等腰三角形的判定与性质以及等腰三角形的性质;证明三角形全等是解决问题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:湖北省武汉市�~口区2015_2016学年八年级数学上学期期中试题含解析.doc
    链接地址:https://www.ketangku.com/wenku/file-568169.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1