202111高三理科数学答案.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 202111 理科 数学 答案
- 资源描述:
-
1、山大附中20212022学年第一学期期中考试高三年级数学(理科)参考答案一、 单选题123456789101112DDCCDACDBDDA二、填空题13:【答案】14【答案】15【答案】16【答案】 三解答题17下图的茎叶图记录了甲,乙两组各八位同学在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为24,乙组数据的平均数为25.(1)求x,y的值;(2)计算甲、乙两组数据的方差,并比较哪一组的成绩更稳定?【详解】(1)由,得,由,得5分(2)设甲、乙两组数据的方差分别为、,甲组数据的平均数为,因为,所以乙组的成绩更稳定12分18如图,在四棱锥中,平面平面,是边长为的等边三角形,是以
2、为斜边的等腰直角三角形.(1)证明:平面平面;(2)求直线与平面所成角的正弦值.【答案】(1)证明见解析;(2).【分析】(1)利用面面垂直的性质定理可得出平面,可得出,再由已知条件结合线面垂直的判定定理可得出平面,利用面面垂直的判定定理可证得结论成立;(2)证明出平面,然后以点为坐标原点,、所在直线分别为、轴建立空间直角坐标系,利用空间向量法可求得直线与平面所成角的正弦值.【详解】(1)因为平面平面,平面平面,平面,所以平面,平面,所以.又因为,所以平面.因为平面,所以平面平面;6分(2)取的中点,连接、,因为,所以.又因为平面,平面平面,平面平面,所以平面.因为平面,所以.因为,所以.以点
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
