分享
分享赚钱 收藏 举报 版权申诉 / 8

类型2021届高考数学二轮复习 专题能力训练16 直线与圆 理(含解析).docx

  • 上传人:a****
  • 文档编号:612793
  • 上传时间:2025-12-11
  • 格式:DOCX
  • 页数:8
  • 大小:109.69KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2021届高考数学二轮复习 专题能力训练16 直线与圆 理含解析 2021 高考 数学 二轮 复习 专题 能力 训练 16 直线 解析
    资源描述:

    1、专题能力训练16直线与圆专题能力训练第38页一、能力突破训练1.已知圆E经过三点A(0,1),B(2,0),C(0,-1),且圆心在x轴的正半轴上,则圆E的标准方程为()A.x-322+y2=254B.x+342+y2=2516C.x-342+y2=2516D.x-342+y2=254答案:C解析:因为圆心在x轴的正半轴上,排除B;代入点A(0,1),排除A,D.故选C.2.若直线x-2y-3=0与圆C:(x-2)2+(y+3)2=9交于E,F两点,则ECF的面积为()A.32B.25C.355D.34答案:B解析:由题意,圆心为C(2,-3),半径为r=3,则ECF的高h=d=|2+23-3

    2、|1+(-2)2=5,底边长为l=2r2-d2=29-5=4,所以SECF=1245=25,故选B.3.(2018全国,理6)已知直线x+y+2=0分别与x轴、y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则ABP面积的取值范围是()A.2,6B.4,8C.2,32D.22,32答案:A解析:设圆心到直线AB的距离d=|2+0+2|2=22.点P到直线AB的距离为d.易知d-rdd+r,即2d32.又AB=22,SABP=12|AB|d=2d,2SABP6.4.(2020全国,理5)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x-y-3=0的距离为()A.55B.255C.35

    3、5D.455答案:B解析:由题意可知,圆心在第一象限.设圆心为(a,a)(a0),则(2-a)2+(1-a)2=a2,解得a=1或a=5.当a=1时,圆心为(1,1),此时圆心到直线2x-y-3=0的距离为d1=|2-1-3|5=255.当a=5时,圆心为(5,5),此时圆心到直线2x-y-3=0的距离为d2=|25-5-3|5=255.综上,圆心到直线2x-y-3=0的距离为255.故选B.5.(2020全国,理10)若直线l与曲线y=x和圆x2+y2=15都相切,则l的方程为()A.y=2x+1B.y=2x+12C.y=12x+1D.y=12x+12答案:D解析:由y=x得y=12x,设直

    4、线l与曲线y=x的切点为(x0,x0),则直线l的方程为y-x0=12x0(x-x0),即12x0x-y+12x0=0,由直线l与圆x2+y2=15相切,得圆心(0,0)到直线l的距离等于圆的半径r=55,即|12x0|14x0+1=55,解得x0=1(负值舍去),所以直线l的方程为y=12x+12.6.公元前3世纪,古希腊数学家阿波罗尼斯(Apollonius)在平面轨迹一书中,曾研究了众多的平面轨迹问题,其中有如下结果:平面内到两定点距离之比等于已知数的动点轨迹为直线或圆,后世把这种圆称之为阿波罗尼斯圆.在平面直角坐标系中,已知点A(-2,0),B(2,0),则满足|PA|=2|PB|的点

    5、P的轨迹的圆心为,面积为.答案:103,0649解析:设P(x,y),|PA|=2|PB|,(x+2)2+y2=2(x-2)2+y2,即(x+2)2+y2=4(x-2)2+4y2,化简可得x-1032+y2=649.故圆心坐标为103,0,面积为649.7.已知圆C的圆心与抛物线y2=4x的焦点F关于直线y=x对称,直线4x-3y-2=0与圆C相交于A,B两点,且|AB|=6,则圆C的方程为.答案:x2+(y-1)2=10解析:抛物线y2=4x的焦点F(1,0)关于直线y=x的对称点C(0,1)是圆心,C到直线4x-3y-2=0的距离d=|40-31-2|5=1.圆截直线4x-3y-2=0的弦

    6、长为6,圆的半径r=12+32=10.圆方程为x2+(y-1)2=10.8.已知P是抛物线y2=4x上的动点,过点P作抛物线准线的垂线,垂足为点M,N是圆(x-2)2+(y-5)2=1上的动点,则|PM|+|PN|的最小值是.答案:26-1解析:抛物线y2=4x的焦点为F(1,0),圆(x-2)2+(y-5)2=1的圆心为C(2,5),根据抛物线的定义可知点P到准线的距离等于点P到焦点的距离,进而推断出当P,C,F三点共线时,点P到点C的距离与点P到抛物线的焦点距离之和的最小值为|FC|=(2-1)2+(5-0)2=26,故|PM|+|PN|的最小值是|FC|-1=26-1.9.在平面直角坐标

    7、系xOy中,以坐标原点O为圆心的圆与直线x-3y=4相切.(1)求圆O的方程;(2)若圆O上有两点M,N关于直线x+2y=0对称,且|MN|=23,求直线MN的方程;(3)设圆O与x轴相交于A,B两点,若圆内的动点P使|PA|,|PO|,|PB|成等比数列,求PAPB的取值范围.解:(1)依题意,圆O的半径r等于原点O到直线x-3y=4的距离,即r=41+3=2.所以圆O的方程为x2+y2=4.(2)由题意,可设直线MN的方程为2x-y+m=0.则圆心O到直线MN的距离d=|m|5.由垂径定理,得m25+(3)2=22,即m=5.所以直线MN的方程为2x-y+5=0或2x-y-5=0.(3)设

    8、点P(x,y),由题意得点A(-2,0),B(2,0).由|PA|,|PO|,|PB|成等比数列,得(x+2)2+y2(x-2)2+y2=x2+y2,即x2-y2=2.因为PAPB=(-2-x,-y)(2-x,-y)=2(y2-1),且点P在圆O内,所以0x2+y24,x2-y2=2.由此得0y2|AA|.所以点B的轨迹是以A,A为焦点,长轴长为4的椭圆.其中,a=2,c=3,b=1,故曲线的方程为x24+y2=1.(2)因为B为CD的中点,所以OBCD,则OBAB.设B(x0,y0),则x0(x0-3)+y02=0.又x024+y02=1,解得x0=23,y0=23.则kOB=22,kAB=

    9、2,则直线AB的方程为y=2(x-3),即2x-y-6=0或2x+y-6=0.11.已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.(1)求k的取值范围;(2)若OMON=12,其中O为坐标原点,求|MN|.解:(1)由题设,可知直线l的方程为y=kx+1.因为l与C交于两点,所以|2k-3+1|1+k21.解得4-73k0)将ABC分割为面积相等的两部分,则b的取值范围是()A.(0,1)B.1-22,12C.1-22,13D.13,12答案:B解析:由题意可得,ABC的面积为S=12ABOC=1,由于直线y=ax+b(a0)与x轴的交点为M-ba

    10、,0,由-ba0可得点M在射线OA上.设直线和BC的交点为N,又直线BC的方程为x+y=1,则由y=ax+b,x+y=1,可得点N的坐标为1-ba+1,a+ba+1.若点M和点A重合,则点N为线段BC的中点,则-ba=-1,且a+ba+1=12,解得a=b=13.若点M在点O和点A之间,则点N在点B和点C之间,由题意可得NMB的面积等于12,即12|MB|yN=12,即121+baa+ba+1=12,解得a=b21-2b0,则b12.若点M在点A的左侧,则-baa,设直线y=ax+b和AC的交点为P,则由y=ax+b,y=x+1,求得点P的坐标为1-ba-1,a-ba-1,此时,NP=1-ba

    11、+1-1-ba-12+a+ba+1-a-ba-12=-2(1-b)(a+1)(a-1)2+2a(b-1)(a+1)(a-1)2=4(1+a2)(1-b)2(a+1)2(a-1)2=2|1-b|(a+1)(a-1)|1+a2,此时,点C(0,1)到直线y=ax+b的距离为|0-1+b|1+a2=|b-1|1+a2,由题意可得,CPN的面积等于12,即122|1-b|(a+1)(a-1)|1+a2|b-1|1+a2=12,化简,得2(1-b)2=|a2-1|.由于此时0a1,2(1-b)2=|a2-1|=1-a2.两边开方可得2(1-b)=1-a21,则1-b1-22,综合以上可得,b=13符合题

    12、意,且b1-22,即b的取值范围是1-22,12.14.已知坐标原点为O,过点P(2,6)作直线2mx-(4m+n)y+2n=0(m,n不同时为零)的垂线,垂足为M,则|OM|的取值范围是.答案:5-5,5+5解析:根据题意,直线2mx-(4m+n)y+2n=0,即m(2x-4y)-n(y-2)=0,则有2x-4y=0,y-2=0,解得x=4,y=2,则直线恒过定点(4,2).设点Q(4,2),又MP与直线垂直,且M为垂足,则点M的轨迹是以PQ为直径的圆,其方程为(x-3)2+(y-4)2=5.所以5-5|OM|5+5,即|OM|的取值范围是5-5,5+5.15.已知直线l:mx+y+3m-3

    13、=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点.若|AB|=23,则|CD|=.答案:4解析:因为|AB|=23,且圆的半径R=23,所以圆心(0,0)到直线mx+y+3m-3=0的距离为R2-|AB|22=3.由|3m-3|m2+1=3,解得m=-33.将其代入直线l的方程,得y=33x+23,即直线l的倾斜角为30.由平面几何知识知在梯形ABDC中,|CD|=|AB|cos30=4.16.如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=

    14、6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得TA+TP=TQ,求实数t的取值范围.解:圆M的标准方程为(x-6)2+(y-7)2=25,所以圆心M(6,7),半径为5.(1)由圆心N在直线x=6上,可设N(6,y0).因为圆N与x轴相切,与圆M外切,所以0y0r,此时不满足直线与圆相交,舍去,故圆C的方程为(x-2)2+(y-1)2=5.(3)解点B(0,2)关于直线x+y+2=0的对称点为B(-4,-2),则|PB|+|PQ|=|PB|+|PQ|BQ|.又点B到圆上点Q的最短距离为|BC|-r=(-6)2+(-3)2-5=35-5=25,所以|PB|+|PQ|的最小值为25,直线BC的方程为y=12x,则直线BC与直线x+y+2=0的交点P的坐标为-43,-23.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2021届高考数学二轮复习 专题能力训练16 直线与圆 理(含解析).docx
    链接地址:https://www.ketangku.com/wenku/file-612793.html
    关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1