2021高考数学(理)人教A版一轮复习学案 作业:第二章 2-9 函数模型及其应用 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021高考数学理人教A版一轮复习学案 作业:第二章 2-9 函数模型及其应用 WORD版含解析 2021 高考 数学 人教 一轮 复习 作业 第二 函数 模型 及其 应用 WORD 解析
- 资源描述:
-
1、2.9函数模型及其应用最新考纲考情考向分析1.了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.考查根据实际问题建立函数模型解决问题的能力,常与函数图象、单调性、最值及方程、不等式交汇命题,题型以选择、填空题为主,中档难度.1几类函数模型函数模型函数解析式一次函数模型f(x)axb(a,b为常数,a0)反比例函数模型f(x)b(k,b为常数且k0)二次函数模型f(x)ax2bxc(a,b,c为常数,a0)指数函数模型f(x)baxc
2、(a,b,c为常数,b0,a0且a1)对数函数模型f(x)blogaxc(a,b,c为常数,b0,a0且a1)幂函数模型f(x)axnb (a,b为常数,a0)2.三种函数模型的性质函数性质yax(a1)ylogax(a1)yxn(n0)在(0,)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图象的变化随x的增大逐渐表现为与y轴平行随x的增大逐渐表现为与x轴平行随n值变化而各有不同值的比较存在一个x0,当xx0时,有logaxxn0且a1,则不存在x0,使x0,b1)增长速度越来越快的形象比喻()题组二教材改编2用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积
3、最大,则隔墙的长度为_答案3解析设隔墙的长度为x(0x0)若物体的温度总不低于2摄氏度,则m的取值范围是_答案解析由题意得,m2t21t2恒成立(t0,且m0),又m2t21t2,22,m.题组三易错自纠5某市生产总值连续两年持续增加第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为_答案1解析设年平均增长率为x,则(1x)2(1p)(1q),x1.6已知某种动物繁殖量y(只)与时间x(年)的关系为yalog3(x1),设这种动物第2年有100只,到第8年它们发展到_只答案200解析由题意知100alog3(21),a100,y100log3(x1)当x8时,y100
4、log39200. 用函数图象刻画变化过程1.高为H,满缸水量为V的鱼缸的轴截面如图所示,其底部破了一个小洞,满缸水从洞中流出,若鱼缸水深为h时水的体积为v,则函数vf(h)的大致图象是()答案B解析vf(h)是增函数,且曲线的斜率应该是先变大后变小,故选B.2设甲、乙两地的距离为a(a0),小王骑自行车匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图象为()答案D解析y为“小王从出发到返回原地所经过的路程”而不是位移,故排除A,C.又因为小王在乙地休息10分钟,故排除B,故选D.3某公司为确
5、定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)的影响根据近8年的年宣传费xi和年销售量yi(i1,2,8)数据得到下面的散点图则下列哪个作为年销售量y关于年宣传费x的函数模型最适合()Ayaxb ByabCyabx Dyax2bxc答案B解析根据散点图可知,选择yab最适合思维升华判断函数图象与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象(2)验证法:根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案 已知函数模型
6、的实际问题例(1)某工厂生产某种产品固定成本为2 000万元,并且每生产一单位产品,成本增加10万元又知总收入K是单位产品数Q的函数,K(Q)40QQ2,则总利润L(Q)的最大值是_万元答案2 500解析L(Q)40QQ210Q2 000Q230Q2 000(Q300)22 500.则当Q300时,L(Q)取得最大值为2 500万元(2)为了预防流感,某学校对教室用药熏消毒法进行消毒已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式yta(a为常数),如图所示,根据图中提供的信息,回答下列问题:从药物释放开始,每立方米空气中的含药
7、量y(毫克)与时间t(小时)之间的函数关系式为_据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过_小时后,学生才能回到教室答案y0.6解析设ykt,由图象知ykt过点(0.1,1),则1k0.1,k10,y10t(0t0.1)由yta过点(0.1,1),得10.1a,解得a0.1,yt0.1(t0.1)由t0.10.25,得t0.6.故至少需经过0.6小时学生才能回到教室思维升华求解所给函数模型解决实际问题的关键点(1)认清所给函数模型,弄清哪些量为待定系数(2)根据已知利用待定系数法,确定模型中的待定系数(3)利用该模型求解实际问题跟
8、踪训练(1)拟定甲、乙两地通话m分钟的电话费(单位:元)由f(m)1.06(0.5m1)给出,其中m0,m是不超过m的最大整数(如33,3.73,3.13),则甲、乙两地通话6.5分钟的电话费为_元答案4.24解析m6.5,m6,则f(6.5)1.06(0.561)4.24.(2)某地西红柿上市后,通过市场调查,得到西红柿种植成本Q(单位:元/100 kg)与上市时间t(单位:天)的数据如下表:时间t60100180种植成本Q11684116根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q与上市时间t的变化关系:Qatb,Qat2btc,Qabt,Qalogbt.利用你选取的函数,求
9、:西红柿种植成本最低时的上市天数是_;最低种植成本是_元/100 kg.答案12080解析因为随着时间的增加,种植成本先减少后增加,而且当t60和t180时种植成本相等,再结合题中给出的四种函数关系可知,种植成本与上市时间的变化关系应该用二次函数Qat2btc,即Qa(t120)2m描述,将表中数据代入可得解得所以Q0.01(t120)280,故当上市天数为120时,种植成本取到最低值80元/100 kg.命题点1构造二次函数模型例1某城市对一种售价为每件160元的商品征收附加税,税率为R%(即每销售100元征税R元),若每年销售量为万件,要使附加税不少于128万元,则R的取值范围是()A4,
10、8 B6,10C4%,8% D6%,10%答案A解析根据题意,要使附加税不少于128万元,需160R%128,整理得R212R320,解得4R8,即R4,8命题点2构造指数函数、对数函数模型例2一片森林原来面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的,已知到今年为止,森林剩余面积为原来的.(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年?解(1)设每年砍伐面积的百分比为x(0x1),则a(1x)10a,即(1x)10,解得x1.(2)设经过m年剩余面积为原来的,则a(1x)ma,
11、即,即,解得m5.故到今年为止,该森林已砍伐了5年若本例的条件不变,试计算:今后最多还能砍伐多少年?解设从今年开始,以后砍了n年,则n年后剩余面积为a(1x)n.令a(1x)na,即(1x)n,即,解得n15.故今后最多还能砍伐15年命题点3构造“对勾函数”模型例3(1)某汽车运输公司购买了一批豪华大客车投入营运,据市场分析,每辆客车营运的总利润y(万元)与营运年数x的关系如图所示(抛物线的一段),则为使其营运年平均利润最大,每辆客车营运年数为_答案5解析根据图象求得y(x6)211,年平均利润12,x10,当且仅当x5时等号成立要使平均利润最大,客车营运年数为5.(2)某地区要建造一条防洪堤
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-632110.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
