分享
分享赚钱 收藏 举报 版权申诉 / 29

类型2022-2023学年京改版八年级数学上册第十二章三角形综合测试试卷(含答案详解).docx

  • 上传人:a****
  • 文档编号:634582
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:29
  • 大小:905.67KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 改版 八年 级数 上册 第十二 三角形 综合测试 试卷 答案 详解
    资源描述:

    1、京改版八年级数学上册第十二章三角形综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,则的长为()ABCD2、将一副三角尺按如图所示的方式摆放,则的大小为()ABCD3、下列说法:若,则为

    2、的中点若,则是的平分线,则若,则,其中正确的有()A1个B2个C3个D4个4、如图,点在的延长线上,于点,交于点若,则的度数为()A65B70C75D855、如图,在和中,连接交于点,连接下列结论:;平分;平分其中正确的个数为()A4B3C2D16、平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是()A1B2C7D87、如图,若,则的度数为()A80B35C70D308、如图,在中,以各边为斜边分别向外作等腰、等腰、等腰,将等腰和等腰按如图方式叠放到等腰中,已知,则长为()A2BC6D89、下列各组数据为三角形的三边,能构成直角三角形的是()A4,8,7

    3、B2,2,2C2,2,4D13,12,510、若长度分别是a、3、5的三条线段能组成一个三角形,则a的值可以是()A1B2C4D8第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC中,点D是AC的中点,分别以AB,BC为直角边向ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中ABMNBC90,连接MN,已知MN4,则BD_2、如图,已知 O 为ABC 三边垂直平分线的交点,且A50,则BOC 的度数为_度 3、等腰三角形的的两边分别为6和3,则它的第三边为_4、(1)等腰三角形底边长为6cm,一腰上的中线把它的周长分成两部分的差为2cm,则腰长为_

    4、(2)已知的周长为24,于点D,若的周长为20,则AD的长为_(3)已知等腰三角形的周长为24,腰长为x,则x的取值范围是_5、若一个三角形的三边长分别为5,12,13,则此三角形的最长边上的高为_三、解答题(5小题,每小题10分,共计50分)1、(1)如图(a),BD平分,CD平分试确定和的数量关系(2)如图(b),BE平分,CE平分外角试确定和的数量关系(3)如图(c),BF平分外角,CF平分外角试确定和的数量关系2、在中,在的外部作等边三角形,E为的中点,连接并延长交于点F,连接(1)如图1,若,求和的度数;(2)如图2,的平分线交于点M,交于点N,连接补全图2;若,求证:3、如图,在中

    5、,垂足为,延长至,使得,连接(1)求证:;(2)若,求的周长和面积4、如图,已知AOB,作AOB的平分线OC,将直角尺DEMN如图所示摆放,使EM边与OB边重合,顶点D落在OA边上,DN边与OC交于点P(1)猜想DOP是三角形;(2)补全下面证明过程:OC平分AOBDNEM 5、【教材呈现】如图是华师版七年级下册数学教材第76页的部分内容请根据教材提示,结合图,将证明过程补充完整【结论应用】(1)如图,在中,60,平分,平分,求的度数(2)如图,将的折叠,使点落在外的点处,折痕为若,则、满足的等量关系为 (用、的代数式表示)-参考答案-一、单选题1、B【解析】【分析】根据等腰三角形性质求出B,

    6、求出BAC,求出DAC=C,求出AD=DC=4cm,根据含30度角的直角三角形性质求出BD,即可求出答案【详解】AB=AC,C=30,B=30,ABAD,AD=4cm,BD=8cm,ADB=60C=30,DAC=C=30,CD=AD=4cm,BC=BD+CD=8+4=12cm故选B.【考点】本题考查了等腰三角形的性质,含30度角的直角三角形性质,三角形的内角和定理的应用,解此题的关键是求出BD和DC的长2、B【解析】【分析】先根据直角三角板的性质得出ACD的度数,再由三角形内角和定理即可得出结论【详解】解:如图所示,由一副三角板的性质可知:ECD=60,BCA=45,D=90,ACD=ECDB

    7、CA=6045=15,=180DACD=1809015=75, 故选:B【考点】本题考查的是三角形内角和定理,熟知三角形内角和是180是解答此题的关键3、A【解析】【分析】根据直线中点、角平分线、有理数大小比较以及绝对值的性质,逐一判定即可.【详解】当三点不在同一直线上的时候,点C不是AB的中点,故错误;当OC位于AOB的内部时候,此结论成立,故错误;当为负数时,故错误;若,则,故正确;故选:A.【考点】此题主要考查直线中点、角平分线、有理数大小比较以及绝对值的性质,熟练掌握,即可解题.4、B【解析】【分析】根据题意于点,交于点,则,即【详解】解:,故选B【考点】本题考查垂直的性质,解题关键在

    8、于在证明5、B【解析】【分析】根据题意逐个证明即可,只要证明,即可证明;利用三角形的外角性质即可证明; 作于,于,再证明即可证明平分.【详解】解:,即,在和中,正确;,由三角形的外角性质得:,正确;作于,于,如图所示:则,在和中,平分,正确;正确的个数有3个;故选B【考点】本题是一道几何的综合型题目,难度系数偏上,关键在于利用三角形的全等证明来证明线段相等,角相等.6、C【解析】【分析】如图(见解析),设这个凸五边形为,连接,并设,先在和中,根据三角形的三边关系定理可得,从而可得,再在中,根据三角形的三边关系定理可得,从而可得,由此即可得出答案【详解】解:如图,设这个凸五边形为,连接,并设,在

    9、中,即,在中,即,所以,在中,所以,观察四个选项可知,只有选项C符合,故选:C【考点】本题考查了三角形的三边关系定理,通过作辅助线,构造三个三角形是解题关键7、D【解析】【分析】根据全等三角形的性质即可求出E【详解】解:ABCADE,C=30,E=C=30,故选:D【考点】本题考查了全等三角形的性质,掌握全等三角形的对应角相等是解题的关键8、D【解析】【分析】设ADDBa,AFCFb,BECEc,由勾股定理可求a2+b2c2,由 ,可求b4,即可求解【详解】解:设ADDBa,AFCFb,BECEc,ABa,ACb,BCc,BAC90,AB2+AC2BC2,2a2+2b22c2,a2+b2c2,

    10、将等腰RtADB和等腰RtAFC按如图方式叠放到等腰RtBEC,BGGHa,(a+c)(ca)16,c2a232,b232,b4,ACb8,故选:D【考点】本题考查了勾股定理,折叠的性质,利用整体思想解决问题是本题的关键9、D【解析】【分析】根据勾股定理的逆定理,看较小的两边的平方和是否等于最大的边的平方即可进行判断.【详解】A、42+7282,故不能构成直角三角形;B、22+2222,故不能构成直角三角形;C、2+2=4,故不能构成三角形,不能构成直角三角形;D、52+122=132,故能构成直角三角形,故选D【考点】本题考查的是用勾股定理的逆定理判断三角形的形状,即若三角形的三边符合a2+

    11、b2=c2,则此三角形是直角三角形10、C【解析】【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边,求出a的取值范围即可得解【详解】根据三角形的三边关系得,即,则选项中4符合题意,故选:C【考点】本题主要考查了三角形的三边关系,熟练掌握相关不等关系是解决本题的关键二、填空题1、2【解析】【分析】延长BD到E,使DE=BD,连接AE,证明ADECDB(SAS),可得AE=CB,EAD=BCD,再根据ABM和BCN是等腰直角三角形,证明MBNBAE,可得MN=BE,进而可得BD与MN的数量关系即可求解【详解】解:如图,延长BD到E,使DE=BD,连接AE,点D是AC的中

    12、点,AD=CD,在ADE和CDB中,ADECDB(SAS),AE=CB,EAD=BCD,ABM和BCN是等腰直角三角形,AB=BM,CB=NB,ABM=CBN=90,BN=AE,又MBN+ABC=360-90-90=180,BCA+BAC+ABC=180,MBN=BCA+BAC=EAD+BAC=BAE,在MBN和BAE中,MBNBAE(SAS),MN=BE,BE=2BD,MN=2BD又MN=4,BD=2,故答案为:2【考点】本题考查了全等三角形的判定与性质、等腰直角三角形,解决本题的关键是掌握全等三角形的判定与性质2、设第三边是x,则2008x20而三角形的周长是偶数,故x为偶数,因而x=20

    13、10或2012或2014,满足条件的三角形共有3个故答案为:3个【考点】本题考查了三角形的三边关系已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和16100【解析】【分析】连接AO延长交BC于D,根据线段垂直平分线的性质可得OB=OA=OC,再根据等腰三角形的等边对等角和三角形的外角性质可得BOC=2A,即可求解【详解】解:连接AO延长交BC于D,O 为ABC 三边垂直平分线的交点,OB=OA=OC,OBA=OAB,OCA=OAC,BOD=OBA+OAB=2OAB,COD=OCA+OAC=2OAC,BOC=BOD+COD=2OAB+2OAC=2BAC,BAC=50,BOC

    14、=100故答案为:100【考点】本题考查线段垂直平分线的性质、等腰三角形的性质、三角形的外角性质,属于基础题型,熟练掌握它们的性质和运用是解答的关键3、6【解析】【分析】题目给出等腰三角形有两条边长为3和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形【详解】解:由题意得:当腰为3时,则第三边也为腰,为3,此时3+36故以3,3,6不能构成三角形;当腰为6时,则第三边也为腰,为6,此时3+66,故以3,6,6可构成三角形故答案为:6【考点】本题考查了等腰三角形的定义和三角形的三边关系,已知条件没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应

    15、验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键4、 4cm或8cm 8 【解析】【分析】(1)根据题意画出图形,由题意得 ,即可得 ,又由等腰三角形的底边长为6cm,即可求得答案(2)由ABC的周长为24得到AB,BC的关系,由ABD的周长为20得到AB,BD,AD的关系,再由等腰三角形的性质知,BC为BD的2倍,故可解出AD的值(3)设底边长为y,再由三角形的三边关系即可得出答案【详解】(1)如图, ,BD是中线由题意得存在两种情况:, , 腰长为:4cm或8cm故答案为:4cm或8cm(2)ABC的周长为24, 的周长为20 故答案为:8(3)设底边长为y等腰三角形的周

    16、长为24,腰长为x ,即 解得 故答案为:【考点】本题考查了三角形的综合问题,掌握等腰三角形的性质、等腰三角形三线合一的性质、三角形的周长定义、三角形的三边关系是解题的关键5、【解析】【分析】首先根据三角形的三边长证明三角形是直角三角形,再根据直角三角形的面积公式计算出斜边上的高即可【详解】,此三角形是直角三角形,设最长边上的高为h,由三角形面积得:,解得:故答案为:【考点】此题主要考查了勾股定理逆定理,以及直角三角形的面积计算,关键是熟练掌握勾股定理的逆定理:如果三角形的三边长,b,c满足,那么这个三角形就是直角三角形三、解答题1、(1);(2);(3)【解析】【分析】(1)根据三角形的内角

    17、和定理以及角平分线的定义即可确定和的数量关系;(2)根据三角形的外角性质以及角平分线的定义可得,进而可得和的数量关系;(3)根据三角形的内角和定理可得,结合角平分线的定义,根据即可确定和的数量关系【详解】(1)在中,在中,;(2)在中,在中,(3)在中,在中,【考点】本题考查了三角形的内角和定理,三角形的外角性质,角平分线的定义,熟练掌握以上知识是解题的关键2、(1),;(2)作图见解析;见解析【解析】【分析】(1)结合等腰三角形和等边三角形的性质,可得ABD=ADB,从而求解出角度后,再计算BDF即可;(2)根据尺规作图作角平分线的方法画出的平分线即可;设ACM=BCM=,由AB=AC,推出

    18、ABC=ACB=2,可得NAC=NCA=,DAN=60+,由ABNADN(SSS),推出ABN=ADN=30,BAN=DAN=60+,BAC=60+2,在ABC中,根据BAC+ACB+ABC=180,构建方程求出,再证明MNB=MBN即可解决问题【详解】(1),为等边三角形,又E为的中点,由“三线合一”知,;(2)如图所示:利用尺规作图的方法得到CP,交于点M,交于点N;如图所示,连接,平分,设,在等边三角形中,为的中点,在和中,在中,【考点】本题考查全等三角形的判定和性质,等边三角形的性质,等腰三角形的判定和性质等知识,解题的关键是灵活运用各类图形的性质进行综合分析3、(1)证明见解析;(2

    19、)周长为,面积为22【解析】【分析】(1)先根据垂直的定义可得,再根据三角形全等的判定定理与性质即可得证;(2)先根据全等三角形的性质可得,从而可得,再利用勾股定理可得,从而可得,然后利用勾股定理可得,最后利用三角形的周长公式和面积公式即可得【详解】(1)证明:,在和中,;(2),则的周长为,的面积为【考点】本题考查了三角形全等的判定定理与性质、勾股定理等知识点,熟练掌握三角形全等的判定定理与性质是解题关键4、等腰,DOP,BOP,DPO,BOP,DOP,DPO,OD,PD,见解析【解析】【分析】(1)三角形的种类有多种,从边和角的关系上看常见的有:等腰三角形、等边三角形、直角三角形、观察此三

    20、角形即可大体猜想出三角形的类型;(2)根据角平分线的性质和平行线的性质,求得DOPDPO,即可判断三角形的形状【详解】解:(1)我们猜想DOP是等腰三角形;(2)补全下面证明过程:OC平分AOB,DOPBOP,DNEM,DPOBOP,DOPDPO,ODPD故答案为:等腰,DOP,BOP,DPO,BOP,DOP,DPO,OD,PD【考点】本题考查了角平分线的性质和平行线的性质及等腰三角形,解决本题的关键是掌握平行线的性质定理,找到相等的角5、教材呈现:见解析;(1)120;(2)【解析】【分析】【教材呈现】利用两直线平行,同位角相等,内错角相等,把三角形三个内角转化成一个平角,从而得证【结论应用】(1)利用角平分线的性质得出两个底角之和,从而求出P度数(2)根据四边形BCFD内角和为360,分别表示出各角得出等式即可【详解】解:教材呈现:CDBA,1ACD3+ACD+DCE180,结论应用:(1)BP平分,CP平分, (2),在ABC中,又四边形BCDF内角和为360,【考点】本题考查平行线的性质,角平分线的定义,三角形内角和定理,翻折等知识,根据翻折前后对应角相等时解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年京改版八年级数学上册第十二章三角形综合测试试卷(含答案详解).docx
    链接地址:https://www.ketangku.com/wenku/file-634582.html
    相关资源 更多
  • 人教版数学六年级上学期期末综合素养提升卷及答案1套.docx人教版数学六年级上学期期末综合素养提升卷及答案1套.docx
  • 人教版数学六年级上学期期末综合素养提升卷及完整答案(精品).docx人教版数学六年级上学期期末综合素养提升卷及完整答案(精品).docx
  • 人教版数学六年级上学期期末综合素养提升卷及完整答案(名师系列).docx人教版数学六年级上学期期末综合素养提升卷及完整答案(名师系列).docx
  • 人教版数学六年级上学期期末综合素养提升卷及完整答案【考点梳理】.docx人教版数学六年级上学期期末综合素养提升卷及完整答案【考点梳理】.docx
  • 人教版数学六年级上学期期末综合素养提升卷及完整答案【有一套】.docx人教版数学六年级上学期期末综合素养提升卷及完整答案【有一套】.docx
  • 人教版数学六年级上学期期末综合素养提升卷及完整答案【易错题】.docx人教版数学六年级上学期期末综合素养提升卷及完整答案【易错题】.docx
  • 人教版数学六年级上学期期末综合素养提升卷及完整答案【必刷】.docx人教版数学六年级上学期期末综合素养提升卷及完整答案【必刷】.docx
  • 人教版数学六年级上学期期末综合素养提升卷及完整答案【夺冠系列】.docx人教版数学六年级上学期期末综合素养提升卷及完整答案【夺冠系列】.docx
  • 人教版数学六年级上学期期末综合素养提升卷及完整答案.docx人教版数学六年级上学期期末综合素养提升卷及完整答案.docx
  • 人教版数学六年级上学期期末综合素养提升卷及参考答案(达标题).docx人教版数学六年级上学期期末综合素养提升卷及参考答案(达标题).docx
  • 人教版数学六年级上学期期末综合素养提升卷及参考答案(能力提升).docx人教版数学六年级上学期期末综合素养提升卷及参考答案(能力提升).docx
  • 人教版数学六年级上学期期末综合素养提升卷及参考答案(综合卷).docx人教版数学六年级上学期期末综合素养提升卷及参考答案(综合卷).docx
  • 人教版数学六年级上学期期末综合素养提升卷及参考答案(精练).docx人教版数学六年级上学期期末综合素养提升卷及参考答案(精练).docx
  • 人教版数学六年级上学期期末综合素养提升卷及参考答案(研优卷).docx人教版数学六年级上学期期末综合素养提升卷及参考答案(研优卷).docx
  • 人教版数学六年级上学期期末综合素养提升卷及参考答案(满分必刷).docx人教版数学六年级上学期期末综合素养提升卷及参考答案(满分必刷).docx
  • 人教版数学六年级上学期期末综合素养提升卷及参考答案(巩固).docx人教版数学六年级上学期期末综合素养提升卷及参考答案(巩固).docx
  • 人教版数学六年级上学期期末综合素养提升卷及参考答案(完整版).docx人教版数学六年级上学期期末综合素养提升卷及参考答案(完整版).docx
  • 人教版数学六年级上学期期末综合素养提升卷及参考答案一套.docx人教版数学六年级上学期期末综合素养提升卷及参考答案一套.docx
  • 人教版数学六年级上学期期末综合素养提升卷及参考答案【黄金题型】.docx人教版数学六年级上学期期末综合素养提升卷及参考答案【黄金题型】.docx
  • 人教版数学六年级上学期期末综合素养提升卷及参考答案【轻巧夺冠】.docx人教版数学六年级上学期期末综合素养提升卷及参考答案【轻巧夺冠】.docx
  • 人教版数学六年级上学期期末综合素养提升卷及参考答案【能力提升】.docx人教版数学六年级上学期期末综合素养提升卷及参考答案【能力提升】.docx
  • 人教版数学六年级上学期期末综合素养提升卷及参考答案【考试直接用】.docx人教版数学六年级上学期期末综合素养提升卷及参考答案【考试直接用】.docx
  • 人教版数学六年级上学期期末综合素养提升卷及参考答案【综合题】.docx人教版数学六年级上学期期末综合素养提升卷及参考答案【综合题】.docx
  • 人教版数学六年级上学期期末综合素养提升卷及参考答案【研优卷】.docx人教版数学六年级上学期期末综合素养提升卷及参考答案【研优卷】.docx
  • 人教版数学六年级上学期期末综合素养提升卷及参考答案【巩固】.docx人教版数学六年级上学期期末综合素养提升卷及参考答案【巩固】.docx
  • 人教版数学六年级上学期期末综合素养提升卷及参考答案【完整版】.docx人教版数学六年级上学期期末综合素养提升卷及参考答案【完整版】.docx
  • 人教版数学六年级上学期期末综合素养提升卷及参考答案【基础题】.docx人教版数学六年级上学期期末综合素养提升卷及参考答案【基础题】.docx
  • 人教版数学六年级上学期期末综合素养提升卷及参考答案【培优b卷】.docx人教版数学六年级上学期期末综合素养提升卷及参考答案【培优b卷】.docx
  • 人教版数学六年级上学期期末综合素养提升卷及参考答案【培优a卷】.docx人教版数学六年级上学期期末综合素养提升卷及参考答案【培优a卷】.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1