分享
分享赚钱 收藏 举报 版权申诉 / 31

类型2022-2023学年度人教版九年级数学上册第二十四章圆综合练习试题(详解版).docx

  • 上传人:a****
  • 文档编号:641575
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:31
  • 大小:1.52MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 度人 九年级 数学 上册 第二 十四 综合 练习 试题 详解
    资源描述:

    1、人教版九年级数学上册第二十四章圆综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,矩形中,分别是,边上的动点,以为直径的与交于点,则的最大值为()A48B45C42D402、如图,是的弦,点在

    2、过点的切线上,交于点若,则的度数等于()ABCD3、如图,点在上,则()ABCD4、如图,AC是O的直径,弦AB/CD,若BAC=32,则AOD等于()A64B48C32D765、如图,AB是O的弦,等边三角形OCD的边CD与O相切于点P,连接OA,OB,OP,AD若COD+AOB180, AB6,则AD的长是()A6B3C2D6、往直径为的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为()ABCD7、如图是一圆锥的侧面展开图,其弧长为,则该圆锥的全面积为 A60B85C95D1698、已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是()ABCD9、如图,在AB

    3、C中, AG平分CAB,使用尺规作射线CD,与AG交于点E,下列判断正确的是()AAG平分CDBC点E是ABC的内心D点E到点A,B,C的距离相等10、如图,正方形的边长为4,以点为圆心,为半径画圆弧得到扇形(阴影部分,点在对角线上)若扇形正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()AB1CD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,PA,PB分别切O于A,B,并与O的切线,分别相交于C,D,已知PCD的周长等于10cm,则PA=_ cm2、如图,在中,半径,是半径上一点,且,是上的两个动点,是的中点,则的长的最大值等于_3、一个扇形的弧长是,面

    4、积是,则这个扇形的圆心角是_度4、如图,在平面直角坐标系中,点A(0,1)、B(0,1),以点A为圆心,AB为半径作圆,交x轴于点C、D,则CD的长是_5、如图,以为直径作半圆,圆心为点;以点为圆心,为半径作,过点作的平行线交两弧于点、,则阴影部分的面积是_.三、解答题(5小题,每小题10分,共计50分)1、如图1,正方形ABCD中,点P、Q是对角线BD上的两个动点,点P从点B出发沿着BD以1cm/s的速度向点D运动;点Q同时从点D出发沿着DB以2cm的速度向点B运动设运动的时间为xs,AQP的面积为ycm2,y与x的函数图象如图2所示,根据图象回答下列问题:(1)a (2)当x为何值时,AP

    5、Q的面积为6cm2;(3)当x为何值时,以PQ为直径的圆与APQ的边有且只有三个公共点2、如图所示,AB是O的直径,点C为O上一点,过点B作BDCD,垂足为点D,连结BCBC平分ABD求证:CD为O的切线3、如图,点A,B,C,D在O上,求证:(1)ACBD;(2)ABEDCE4、在下列正多边形中,是中心,定义:为相应正多边形的基本三角形如图1,是正三角形的基本三角形;如图2,是正方形的基本三角形;如图3,为正边形的基本三角形将基本绕点逆时针旋转角度得(1)若线段与线段相交点,则:图1中的取值范围是_;图3中的取值范围是_;(2)在图1中,求证(3)在图2中,正方形边长为4,边上的一点旋转后的

    6、对应点为,若有最小值时,求出该最小值及此时的长度;(4)如图3,当时,直接写出的值5、已知,正方形ABCD中,M、N分别为AD边上的两点,连接BM、CN并延长交于一点H,连接AH,E为BM上一点,连接AE、CE,ECHMNH90(1)如图1,若E为BM的中点,且DM3AM,求线段AB的长(2)如图2,若点F为BE中点,点G为CF延长线上一点,且EG/BC,CEGE,求证:(3)如图3,在(1)的条件下,点P为线段AD上一动点,连接BP,作CQBP于Q,将BCQ沿BC翻折得到BCl,点K、R分别为线段BC、Bl上两点,且BI3RI,BC4BK,连接CR、IK交于点T,连接BT,直接写出BCT面积

    7、的最大值-参考答案-一、单选题1、A【解析】【分析】过A点作AHBD于H,连接OM,如图,先利用勾股定理计算出BD=75,则利用面积法可计算出AH=36,再证明点O在AH上时,OH最短,此时HM有最大值,最大值为24,然后根据垂径定理可判断MN的最大值【详解】解:过A点作AHBD于H,连接OM,如图,在RtABD中,BD=,AHBD=ADAB,AH=36,O的半径为26,点O在AH上时,OH最短,HM=,此时HM有最大值,最大值为:24,OHMN,MN=2MH,MN的最大值为224=48故选:A【考点】本题考查了垂径定理:直于弦的直径平分这条弦,并且平分弦所对的两条弧也考查了矩形的性质和勾股定

    8、理2、B【解析】【分析】根据题意可求出APO、A的度数,进一步可得ABO度数,从而推出答案.【详解】,APO=70,AOP=90,A=20,又OA=OB,ABO=20,又点C在过点B的切线上,OBC=90,ABC=OBCABO=9020=70,故答案为:B.【考点】本题考查的是圆切线的运用,熟练掌握运算方法是关键.3、D【解析】【分析】先证明再利用等弧的性质及圆周角定理可得答案【详解】解: 点在上, 故选:【考点】本题考查的两条弧,两个圆心角,两条弦之间的关系,圆周角定理,等弧的概念与性质,掌握同弧或等弧的概念与性质是解题的关键4、A【解析】【分析】由AB/CD,BAC32,根据平行线的性质,

    9、即可求得ACD的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得AOD的度数【详解】解:弦AB/CD,BAC=32,ACDBAD32, AOD=2ACD23264.故选:A【考点】此题考查了圆周角定理与平行线的性质解题的关键是注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半5、C【解析】【分析】如图,过作于 过作于 先证明三点共线,再求解的半径, 证明四边形是矩形,再求解 从而利用勾股定理可得答案.【详解】解:如图,过作于 过作于 是的切线, 三点共线, 为等边三角形, 四边形是矩形, 故选:【考点】本题考查的是等腰三角形,等边三

    10、角形的性质,勾股定理的应用,矩形的判定与性质,切线的性质,锐角三角函数的应用,灵活应用以上知识是解题的关键.6、C【解析】【分析】过点O作ODAB于D,交O于E,连接OA,根据垂径定理即可求得AD的长,又由O的直径为,求得OA的长,然后根据勾股定理,即可求得OD的长,进而求得油的最大深度的长【详解】解:过点O作ODAB于D,交O于E,连接OA,由垂径定理得:,O的直径为,在中,由勾股定理得:,油的最大深度为,故选:【考点】本题主要考查了垂径定理的知识此题难度不大,解题的关键是注意辅助线的作法,构造直角三角形,利用勾股定理解决7、B【解析】【分析】设圆锥的底面圆的半径为r,扇形的半径为R,先根据

    11、弧长公式得到=10,解得R=12,再利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到2r=10,解得r=5,然后计算底面积与侧面积的和【详解】设圆锥的底面圆的半径为r,扇形的半径为R,根据题意得=10,解得R=12,2r=10,解得r=5,所以该圆锥的全面积=52+1012=85故选B【考点】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长8、B【解析】【分析】根据题意可以求得半径,进而解答即可【详解】因为圆内接正三角形的面积为,所以圆的半径为,所以该圆的内接正六边形的边心距sin601,故选B【考点】本题考查正多边

    12、形和圆,解答本题的关键是明确题意,求出相应的图形的边心距9、C【解析】【分析】根据作法可得CD平分ACB,结合题意即可求解【详解】解:由作法得CD平分ACB,AG平分CAB,E点为ABC的内心故答案为:C【考点】此题考查了尺规作图(角平分线),以及三角形角平分线的性质,熟练掌握相关基本性质是解题的关键10、D【解析】【分析】根据题意,扇形ADE中弧DE的长即为圆锥底面圆的周长,即通过计算弧DE的长,再结合圆的周长公式进行计算即可得解【详解】正方形的边长为4是正方形的对角线圆锥底面周长为,解得该圆锥的底面圆的半径是,故选:D【考点】本题主要考查了扇形的弧长公式,圆的周长公式,正方形的性质以及圆锥

    13、的相关知识点,熟练掌握弧长公式及圆的周长公式是解决本题的关键二、填空题1、5【解析】【详解】如图,设DC与O的切点为E,PA、PB分别是O的切线,且切点为A、B,PA=PB,同理,可得:DE=DA,CE=CB,则PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=10(cm),PA=PB=5cm,故答案为:52、【解析】【分析】当点F与点D运动至共线时,OF长度最大,此时F是AB的中点,则OFAB,设OF为x,则DFx4,在RtBOF中,利用勾股定理进行求解即可【详解】当点F与点D运动至共线时,OF长度最大,如图所示,F是AB的中点,OCAB,设OF为x,则DFx4,AB

    14、D是等腰直角三角形,DFABBFx4,在RtBOF中,OB2OF2+BF2,OBOC6,解得,或(舍去),OF的长的最大值等于,故答案为:【考点】本题考查了垂径定理,直角三角形斜边中线的性质,勾股定理等知识,确定点F与点D运动至共线时,OF长度最大是解题的关键3、150【解析】【分析】根据弧长公式计算【详解】根据扇形的面积公式可得:,解得r=24cm,再根据弧长公式,解得.故答案为:150.【考点】本题考查了弧长的计算及扇形面积的计算,要记熟公式:扇形的面积公式,弧长公式.4、【解析】【分析】根据题意在中求出,利用垂径定理得出结果【详解】由题意,在中,由垂径定理知,故答案为:【考点】本题考查了

    15、勾股定理及垂径定理,熟练掌握垂径定理是解决本题的关键5、【解析】【分析】连接CE,如图,利用平行线的性质得COEEOB90,再利用勾股定理计算出OE,利用余弦的定义得到OCE60,然后根据扇形面积公式,利用S阴影部分S扇形BCESOCES扇形BOD进行计算即可【详解】解:连接CE,如图,ACBC,ACB90,ACOE,COEEOB90,OC1,CE2,OE,cosOCE,OCE60,S阴影部分S扇形BCESOCES扇形BOD,故答案为【考点】本题考查了扇形面积的计算:求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积三、解答题1、(1)9;(2)x或x4;(3)x0或x2或2x3【解析

    16、】【分析】(1)由题意可得Q运动3s达到B,即得BD=6,可知,从而a=ABAD=9;(2)连接AC交BD于O,可得OA=AC=BD=3,根据APQ的面积为6,即得PQ=4,当P在Q下面时,x=,当P在Q上方时,Q运动3s到B,x=4;(3)当x=0时,B与P重合,D与Q重合,此时以PQ为直径的圆与APQ的边有且只有三个公共点,同理t=6时,以PQ为直径的圆与APQ的边有且只有三个公共点,当Q运动到BD中点时,以PQ为直径的圆与AQ相切,与APQ的边有且只有三个公共点,x=,当P、Q重合时,不构成三角形和圆,此时x=2,当Q运动到B,恰好P运动到BD中点,x=3,以PQ为直径的圆与APQ的边有

    17、且只有三个公共点,即可得到答案【详解】解:(1)由题意可得:Q运动3s达到B,BD=32=6,四边形ABCD是正方形,a=ABAD=9,故答案为:9;(2)连接AC交BD于O,如图:四边形ABCD是正方形,ACBD,OA=AC=BD=3,APQ的面积为6,PQOA=6,即PQ3=6,PQ=4,而BP=x,DQ=2x,当P在Q下面时,6-x-2x=4,x=,当P在Q上方时,Q运动3s到B,此时PQ=3,x=4时,PQ=4,则APQ的面积为6;综上所述,x=或x=4;(3)当x=0时,如图:B与P重合,D与Q重合,此时以PQ为直径的圆与APQ的边有且只有三个公共点,同理,当Q运动到B,P运动到D时

    18、,以PQ为直径的圆与APQ的边有且只有三个公共点,此时t=6,当Q运动到BD中点时,如图:此时x=,以PQ为直径的圆与AQ相切,故与APQ的边有且只有三个公共点,当P、Q重合时,如图:显然不构成三角形和圆,此时x=2,当Q运动到B,恰好P运动到BD中点,如图:此时x=3,以PQ为直径的圆与APQ的边有且只有三个公共点,综上所述,以PQ为直径的圆与APQ的边有且只有三个公共点,x=0或t=6或x2或2x3【考点】本题考查正方形中的动点问题,涉及函数图象、三角形面积、直线与圆的位置关系等知识,解题关键是画出图形,数形结合,分类思想的应用2、证明见解析.【解析】【详解】【分析】先利用BC平分ABD得

    19、到OBC=DBC,再证明OCBD,从而得到OCCD,然后根据切线的判定定理得到结论【详解】BC平分ABD,OBC=DBC,OB=OC,OBC=OCB,OCB=DBC,OCBD,BDCD,OCCD,CD为O的切线【考点】本题考查了切线的判定定理,熟知经过半径的外端且垂直于这条半径的直线是圆的切线是解题的关键3、 (1)见解析(2)见解析【解析】【分析】(1)两个等弧同时加上一段弧后两弧仍然相等;再通过同弧所对的弦相等证明即可;(2)根据同弧所对的圆周角相等,对顶角相等即可证明相似(1)BD=AC(2)B=C;AEB=DECABEDCE【考点】本题考查等弧所对弦相等、所对圆周角相等,掌握这些是本题

    20、关键4、(1),;(2)见解析;(3)最小值:,此时2+;(4)【解析】【分析】(1)根据正多边形的中心角的定义即可解决问题;(2)如图1中,作OEBC于E,OF于F,连接利用全等三角形的性质分别证明:BE,即可解决问题;(3)如图2中,作点O关于BC的对称点E,连接OE交BC于K,连接交BC于点,连接,此时的值最小,即有最小值(4)利用等腰三角形三线合一的性质即可解决问题;【详解】(1)由题意图1中,ABC是等边三角形,O是中心,AOB120的取值范围是:0120,图3中,ABCDEF是正n边形,O是中心,BOC,的取值范围是:0,故答案为:0120,0(2)如图1中,作OEBC于E,OF于

    21、F,连接OEBOF90,根据题意,O是中心,OBOC,OBE,OBEOF(AAS),OEOF,BEF,RtRt(HL),(3)如图2中,作点O关于BC的对称点E,连接OE交BC于K,连接交BC于点,连接,此时的值最小135,BOC90,OCB45,BC,OKBC,OBOC,BKCK2,OB2,OKKE,2+,在Rt中,有最小值,最小值为,此时2+(4)如图3中,ABCDEF是正n边形,O是中心,BOC,OC, ,BOC,【考点】本题属于多边形综合题,考查了正多边形的性质,旋转变换,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题5、 (1)4(2)

    22、证明见解析(3)【解析】【分析】(1)由正方形ABCD的性质,可得到ABM为直角三角形,再由E为BM中点,得到BM=2AE,最后由勾股定理求得AB的长度;(2)过点A作AYBH于点Y,由EGBC,CEGE,F为BE中点,可得GEFCBF,从而得到BCE为等腰三角形,再根据角的关系,易得ECGECH=BCD=45,得到HFC为等腰直角三角形,再根据ABYBCF,得到BM=CF,AY=BF,从而转化得到结论;(3)当P、D重合时得到最大面积,以B为原点建立直角坐标系,求出坐标和表达式,联立方程组求解,即可得出答案(1)解:四边形ABCD为正方形,且DM3AM,BAM=90,AD=AB=4AM,AB

    23、M为直角三角形,E为BM的中点,BM=2AE=,在RtABM中,设AM=x,则AB=4x,解得,AB=4;(2)过点A作AYBH于点Y,EG/BC,CEGE,G=BCG=ECG,F为BE的中点,GEFCBF(AAS),GE=BC,BCE为等腰三角形,CFBE,CFE=90;ECHMNH90,MNH=CND,CNDNCD=90,ECH=NCD,ECGECH=BCD=45,HFC为等腰直角三角形,CF=HF;ABECBE=90,CBEBCF=90,ABE=BCF,AB=BC,AYB=BFC=90,ABYBCF(AAS),BY=CF,AY=BF,BY=HFBY-FY=HF-FYBF=HY=AY,AHY是等腰直角三角形,,;(3)BQC=90,点Q在以BC为直径的半圆弧上运动,当P点与D点重合时,此时Q点离BC最远,QBC和IBC面积最大,此时BCT面积最大;CQBP,CBQ为等腰直角三角形,由翻折可得,CBI为等腰直角三角形,建立如图直角坐标系,作RSBC,TVBC,由(1)中结论可知:B(0,0),C(4,0),I(2,),BI3RI,BC4BK,解得RS=,R,K(1,0),直线KI解析式为:,直线CR解析式为:,联立,解得,即T,【考点】本题属于四边形综合题,考查正方形的性质、全等三角形证明、翻折问题、等腰三角形的性质等,熟练掌握每个性质的核心内容,理清相互之间的联系,属于压轴题

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年度人教版九年级数学上册第二十四章圆综合练习试题(详解版).docx
    链接地址:https://www.ketangku.com/wenku/file-641575.html
    相关资源 更多
  • 人教版数学三年级上学期期末质量监测试题(夺分金卷).docx人教版数学三年级上学期期末质量监测试题(夺分金卷).docx
  • 人教版数学三年级上学期期末质量监测试题(培优b卷).docx人教版数学三年级上学期期末质量监测试题(培优b卷).docx
  • 人教版数学三年级上学期期末质量监测试题(各地真题).docx人教版数学三年级上学期期末质量监测试题(各地真题).docx
  • 人教版数学三年级上学期期末质量监测试题(原创题).docx人教版数学三年级上学期期末质量监测试题(原创题).docx
  • 人教版数学三年级上学期期末质量监测试题(历年真题).docx人教版数学三年级上学期期末质量监测试题(历年真题).docx
  • 人教版数学三年级上学期期末质量监测试题(a卷).docx人教版数学三年级上学期期末质量监测试题(a卷).docx
  • 人教版数学三年级上学期期末质量监测试题附解析答案.docx人教版数学三年级上学期期末质量监测试题附解析答案.docx
  • 人教版数学三年级上学期期末质量监测试题附答案(黄金题型).docx人教版数学三年级上学期期末质量监测试题附答案(黄金题型).docx
  • 人教版数学三年级上学期期末质量监测试题附答案(达标题).docx人教版数学三年级上学期期末质量监测试题附答案(达标题).docx
  • 人教版数学三年级上学期期末质量监测试题附答案(轻巧夺冠).docx人教版数学三年级上学期期末质量监测试题附答案(轻巧夺冠).docx
  • 人教版数学三年级上学期期末质量监测试题附答案(综合题).docx人教版数学三年级上学期期末质量监测试题附答案(综合题).docx
  • 人教版数学三年级上学期期末质量监测试题附答案(满分必刷).docx人教版数学三年级上学期期末质量监测试题附答案(满分必刷).docx
  • 人教版数学三年级上学期期末质量监测试题附答案(巩固).docx人教版数学三年级上学期期末质量监测试题附答案(巩固).docx
  • 人教版数学三年级上学期期末质量监测试题附答案(完整版).docx人教版数学三年级上学期期末质量监测试题附答案(完整版).docx
  • 人教版数学三年级上学期期末质量监测试题附答案【轻巧夺冠】.docx人教版数学三年级上学期期末质量监测试题附答案【轻巧夺冠】.docx
  • 人教版数学三年级上学期期末质量监测试题附答案【模拟题】.docx人教版数学三年级上学期期末质量监测试题附答案【模拟题】.docx
  • 人教版数学三年级上学期期末质量监测试题附答案【完整版】.docx人教版数学三年级上学期期末质量监测试题附答案【完整版】.docx
  • 人教版数学三年级上学期期末质量监测试题附答案【基础题】.docx人教版数学三年级上学期期末质量监测试题附答案【基础题】.docx
  • 人教版数学三年级上学期期末质量监测试题附答案【培优】.docx人教版数学三年级上学期期末质量监测试题附答案【培优】.docx
  • 人教版数学三年级上学期期末质量监测试题附答案【培优a卷】.docx人教版数学三年级上学期期末质量监测试题附答案【培优a卷】.docx
  • 人教版数学三年级上学期期末质量监测试题附答案.docx人教版数学三年级上学期期末质量监测试题附答案.docx
  • 人教版数学三年级上学期期末质量监测试题附参考答案(预热题).docx人教版数学三年级上学期期末质量监测试题附参考答案(预热题).docx
  • 人教版数学三年级上学期期末质量监测试题附参考答案(综合卷).docx人教版数学三年级上学期期末质量监测试题附参考答案(综合卷).docx
  • 人教版数学三年级上学期期末质量监测试题附参考答案(满分必刷).docx人教版数学三年级上学期期末质量监测试题附参考答案(满分必刷).docx
  • 人教版数学三年级上学期期末质量监测试题附参考答案(实用).docx人教版数学三年级上学期期末质量监测试题附参考答案(实用).docx
  • 人教版数学三年级上学期期末质量监测试题附参考答案(完整版).docx人教版数学三年级上学期期末质量监测试题附参考答案(完整版).docx
  • 人教版数学三年级上学期期末质量监测试题附参考答案(培优).docx人教版数学三年级上学期期末质量监测试题附参考答案(培优).docx
  • 人教版数学三年级上学期期末质量监测试题附参考答案(培优a卷).docx人教版数学三年级上学期期末质量监测试题附参考答案(培优a卷).docx
  • 人教版数学三年级上学期期末质量监测试题附参考答案(b卷).docx人教版数学三年级上学期期末质量监测试题附参考答案(b卷).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1