2022-2023学年度人教版八年级数学上册第十三章轴对称专项攻克试卷(详解版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 度人 八年 级数 上册 第十三 轴对称 专项 攻克 试卷 详解
- 资源描述:
-
1、人教版八年级数学上册第十三章轴对称专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,AD是BC边上的高,BAF=CAG=90,AB=AF,AC=AG,连接FG,交DA的延长线于点E
2、,连接BG,CF, 则下列结论:BG=CF;BGCF;EAF=ABC;EF=EG,其中正确的有()ABCD2、给出下列命题,正确的有()个等腰三角形的角平分线、中线和高重合; 等腰三角形两腰上的高相等; 等腰三角形最小边是底边;等边三角形的高、中线、角平分线都相等;等腰三角形都是锐角三角形A1个B2个C3个D4个3、如图,已知是的角平分线,是的垂直平分线,则的长为()A6B5C4D4、下列电视台标志中是轴对称图形的是()ABCD5、等腰三角形两边长为3,6,则第三边的长是()A3B6CD3或66、如图,中,BCA=90,ABC=22.5,将沿直线BC折叠,得到点A的对称点A,连接BA,过点A作
3、AHBA于H,AH与BC交于点E下列结论一定正确的是()AAC =AHB2AC=EBCAE=EHDAE=AH7、北京2022年冬奥会会徽如图所示,组成会徽的四个图案中是轴对称图形的是()ABCD8、如图所示,线段AC的垂直平分线交线段AB于点D,A50,则BDC()A50B100C120D1309、如图,A30,C60,ABC 与ABC关于直线l对称,则B度数为()ABCD10、如图是44的正方形网格,其中已有3个小方格涂成了黑色现在要从其余13个白色小方格中选出一个也涂成黑色,与原来3个黑色方格组成的图形成为轴对称图形,则符合要求的白色小正方格有()A1个B2个C3个D4个第卷(非选择题 7
4、0分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC中,AB=AC,BAC = 36,DE是线段AC的垂直平分线,若BE=,AE=,则用含、的代数式表示ABC的周长为_2、若等腰三角形的一个底角为,则这个等腰三角形的顶角为_3、如图将长方形折叠,折痕为,的对应边与交于点,若,则的度数为_4、如图,在中,点在延长线上,于点,交于点,若,则的长度为_5、已知,点P为内一点,点A为OM上一点,点B为ON上一点,当的周长取最小值时,的度数为_三、解答题(5小题,每小题10分,共计50分)1、如图,中,点在边上,求证2、已知:如图,是的角平分线,于点 ,于点,求证:是的中垂线 3、如图,
5、在边长为1个单位长度的小正方形组成的1212网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位长度,画出平移后得到的四边形ABCD.4、如图,是边长为2的等边三角形,是顶角为120的等腰三角形,以点为顶点作,点、分别在、上(1)如图,当时,则的周长为_;(2)如图,求证:5、在边长为1个单位长度的小正方形网格中,建立平面直角坐标系,已知点O为坐标原点,点C的坐标为(3,1)(1)写出点A和点B的坐标,并在图中画出与ABC关于x轴对称的图形;(2)写出点B1的
6、坐标,连接CB1,则线段CB1的长为 (直接写出得数)-参考答案-一、单选题1、D【解析】【分析】证得CAFGAB(SAS),从而推得正确;利用CAFGAB及三角形内角和与对顶角,可判断正确;证明AFMBAD(AAS),得出FM=AD,FAM=ABD,则正确,同理ANGCDA,得出NG=AD,则FM=NG,证明FMEGNE(AAS)可得出结论正确【详解】解:BAF=CAG=90,BAF+BAC=CAG+BAC,即CAF=GAB,又AB=AF=AC=AG,CAFGAB(SAS),BG=CF,故正确;FACBAG,FCA=BGA,又BC与AG所交的对顶角相等,BG与FC所交角等于GAC,即等于90
7、,BGCF,故正确;过点F作FMAE于点M,过点G作GNAE交AE的延长线于点N,FMA=FAB=ADB=90,FAM+BAD=90,FAM+AFM=90,BAD=AFM,又AF=AB,AFMBAD(AAS),FM=AD,FAM=ABD,故正确,同理ANGCDA,NG=AD,FM=NG,FMAE,NGAE,FME=ENG=90,AEF=NEG,FMEGNE(AAS)EF=EG故正确故选:D【考点】本题综合考查了全等三角形的判定与性质及等腰三角形的三线合一性质与互余、对顶角,三角形内角和等几何基础知识熟练掌握全等三角形的判定与性质是解题的关键2、B【解析】【详解】解:等腰三角形的顶角角平分线、底
8、边上的中线和底边上的高重合,故本选项错误;等腰三角形两腰上的高相等,本选项正确; 等腰三角形最小边不一定底边,故本选项错误;等边三角形的高、中线、角平分线都相等,本选项正确;等腰三角形可以是钝角三角形,故本选项错误,故选B3、D【解析】【分析】根据ED是BC的垂直平分线、BD是角平分线以及A=90可求得C=DBC=ABD=30,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】ED是BC的垂直平分线,DB=DC,C=DBC,BD是ABC的角平分线,ABD=DBC,A=90,C+ABD+DBC=90,C=DBC=ABD=30,BD=2AD=6,CD=6,CE =3,故
9、选D【考点】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.4、A【解析】【分析】根据轴对称图形的定义进行判断,即一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形【详解】解:A选项中的图形是轴对称图形,对称轴有两条,如图所示;B、C、D选项中的图形均不能沿某条直线折叠,直线两旁的部分能够互相重合,因此,它们都不是轴对称图形;故选:A【考点】本题考查了轴对称图形的概念,其中正确理解轴对称图形的概念是解题关键5、B【解析】【分析】题目给出等腰三角形有两条边长为3和6,而没有明确腰、
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-641677.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2018秋新人教部编版九年级语文上册课件:第二单元非连续性文本阅读专练(二)(共18张PPT).ppt
