分享
分享赚钱 收藏 举报 版权申诉 / 26

类型2022-2023学年度人教版八年级数学上册第十三章轴对称同步测评试题(含详细解析).docx

  • 上传人:a****
  • 文档编号:641754
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:26
  • 大小:1.17MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 度人 八年 级数 上册 第十三 轴对称 同步 测评 试题 详细 解析
    资源描述:

    1、人教版八年级数学上册第十三章轴对称同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,直线,等边三角形的顶点、分别在直线和上,边与直线所夹的锐角为,则的度数为()ABCD2、如图是A,B,C三岛

    2、的平面图,C岛在A岛的北偏东35度方向,B岛在A岛的北偏东80度方向,C岛在B岛的北偏西55度方向,则A,B,C三岛组成一个( )A等腰直角三角形B等腰三角形C直角三角形D等边三角形3、一个三角形具备下列条件仍不是等边三角形的是()A一个角的平分线是对边的中线或高线B两边相等,有一个内角是60C两角相等,且两角的和是第三个角的2倍D三个内角都相等4、如图,RtACB中,ACB90,ABC的角平分线AD、BE相交于点P,过P作PFAD交BC的延长线于点F,交AC于点H,则下列结论:APB135;BFBA;PHPD;连接CP,CP平分ACB,其中正确的是()ABCD5、如图,在中,则的长为()AB

    3、CD6、一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B处灯塔C在海岛在海岛A的北偏西42方向上,在海岛B的北偏西84方向上则海岛B到灯塔C的距离是()A15海里B20海里C30海里D60海里7、如图,ABC中,ABAC,DE是AB的垂直平分线交AB于点E,交AC于点D,连接BD;若BDAC,则CBD的度数是()A22B22.5C24D24.58、观察下列作图痕迹,所作CD为ABC的边AB上的中线是()ABCD9、如图,在和中,连接交于点,连接下列结论:;平分;平分其中正确的个数为()A4B3C2D110、若点A(1+m,1n)与点B(3,2)关于y轴对称,则m+n的值是

    4、()A5B3C3D1第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC中,AB=AC,外角ACD=110,则A=_2、若等腰三角形的一个底角为,则这个等腰三角形的顶角为_3、如图,在中,D、E是内两点AD平分,若,则_cm4、如图,将一张直角三角形纸片对折,使点B、C重合,折痕为DE,连接DC,若AC=6cm,ACB=90,B=30,则ADC的周长是_cm5、如图,BD垂直平分线段AC,AEBC,垂足为E,交BD于P点,AE7cm,AP4cm,则P点到直线AB的距离是_三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC中,ABC=40, ACB

    5、=90,AE平分BAC交BC于点EP是边BC上的动点(不与B,C重合),连结AP,将APC沿AP翻折得APD,连结DC,记BCD=(1)如图,当P与E重合时,求的度数(2)当P与E不重合时,记BAD=,探究与的数量关系2、如图,在边长为1个单位长度的小正方形组成的1212网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位长度,画出平移后得到的四边形ABCD.3、已知点,.若、关于轴对称,求的值4、如图,在ABC中,AB=AC,点D是BC的中点,连接AD,过点

    6、C作CEAD,交BA的延长线于点E(1)求证:ECBC;(2)若BAC=120,试判定ACE的形状,并说明理由5、在中,在的外部作等边三角形,E为的中点,连接并延长交于点F,连接(1)如图1,若,求和的度数;(2)如图2,的平分线交于点M,交于点N,连接补全图2;若,求证:-参考答案-一、单选题1、C【解析】【分析】根据,可以得到,再根据等边三角形可以计算出的度数【详解】解:如图所示:根据,又是等边三角形故选:C【考点】本题主要考查了平行线的性质,即两直线平行内错角相等以及两直线平行同位角相等;明确平行线的性质是解题的关键2、A【解析】【分析】先根据方位角的定义分别可求出,再根据角的和差、平行

    7、线的性质可得,从而可得,然后根据三角形的内角和定理可得,最后根据等腰直角三角形的定义即可得【详解】由方位角的定义得:由题意得:由三角形的内角和定理得:是等腰直角三角形即A,B,C三岛组成一个等腰直角三角形故选:A【考点】本题考查了方位角的定义、平行线的性质、三角形的内角和定理、等腰直角三角形的定义等知识点,掌握理解方位角的概念是解题关键3、A【解析】【分析】根据等边三角形的判定方法即可解答.【详解】选项A,一个角的平分线是对边的中线或高线,能判定该三角形是等腰三角形,不能判断该三角形是等边三角形;选项B,两边相等,有一个内角是60,根据有一个角为60的等腰三角形是等边三角形,即可判定该三角形是

    8、等边三角形;选项C,两角相等,且两角的和是第三个角的2倍 ,根据三角形的内角和定理可求得该三角形的三个内角的度数都为60,即可判定该三角形是等边三角形;选项D,三个内角都相等,根据三角形的内角和定理可求得该三角形的三个内角的度数都为60,即可判定该三角形是等边三角形.故选A.【考点】本题考查了等边三角形的判定,熟练运用等边三角形的判定方法是解决问题的关键.4、D【解析】【分析】根据三角形内角和定理以及角平分线定义判断;根据全等三角形的判定和性质判断;根据角平分线的判定与性质判断【详解】解:在ABC中,ACB=90,BAC+ABC=90,又AD、BE分别平分BAC、ABC,BAD+ABE=(BA

    9、C+ABC)=(180-ACB)=(180-90)=45,APB=135,故正确BPD=45,又PFAD,FPB=90+45=135,APB=FPB,又ABP=FBP,BP=BP,ABPFBP(ASA),BAP=BFP,AB=FB,PA=PF,故正确在APH和FPD中,APH=FPD=90,PAH=BAP=BFP,PA=PF,APHFPD(ASA),PH=PD,故正确连接CP,如下图所示:ABC的角平分线AD、BE相交于点P,点P到AB、AC的距离相等,点P到AB、BC的距离相等,点P到BC、AC的距离相等,点P在ACB的平分线上,CP平分ACB,故正确,综上所述,均正确,故选:D【考点】本题

    10、考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理掌握相关性质是解题的关键5、B【解析】【分析】根据等腰三角形性质求出B,求出BAC,求出DAC=C,求出AD=DC=4cm,根据含30度角的直角三角形性质求出BD,即可求出答案【详解】AB=AC,C=30,B=30,ABAD,AD=4cm,BD=8cm,ADB=60C=30,DAC=C=30,CD=AD=4cm,BC=BD+CD=8+4=12cm故选B.【考点】本题考查了等腰三角形的性质,含30度角的直角三角形性质,三角形的内角和定理的应用,解此题的关键是求出BD和DC的长6、C【解析】【分析】根据题意画出图形,根据三角形外角性

    11、质求出C=CAB=42,根据等角对等边得出BC=AB,求出AB即可【详解】解:根据题意得:CBD=84,CAB=42,C=CBD-CAB=42=CAB,BC=AB,AB=15海里/时2时=30海里,BC=30海里,即海岛B到灯塔C的距离是30海里故选C.【考点】本题考查了等腰三角形的性质和判定和三角形的外角性质,关键是求出C=CAB,题目比较典型,难度不大7、B【解析】【分析】先利用线段垂直平分线的性质、等腰三角形的性质求得A、ABD、ABC,最后利用三角形内角和定理求解即可【详解】解:BDAC,DE是AB的垂直平分线,ADB=90,DA=DB,A=ABD=45,AB=AC,ABC=ACB=6

    12、7.5,CBD=ABC-ABD=67.5-45=22.5,故选B【考点】本题主要考查了线段垂直平分线、等腰三角形的性质、三角形内角和定理等知识点,明确题意、灵活应用相关知识点成为解答本题的关键8、B【解析】【分析】根据题意,CD为ABC的边AB上的中线,就是作AB边的垂直平分线,交AB于点D,点D即为线段AB的中点,连接CD即可判断【详解】解:作AB边的垂直平分线,交AB于点D,连接CD,点D即为线段AB的中点,CD为ABC的边AB上的中线故选:B【考点】本题主要考查三角形一边的中线的作法;作该边的中垂线,找出该边的中点是解题关键9、B【解析】【分析】根据题意逐个证明即可,只要证明,即可证明;

    13、利用三角形的外角性质即可证明; 作于,于,再证明即可证明平分.【详解】解:,即,在和中,正确;,由三角形的外角性质得:,正确;作于,于,如图所示:则,在和中,平分,正确;正确的个数有3个;故选B【考点】本题是一道几何的综合型题目,难度系数偏上,关键在于利用三角形的全等证明来证明线段相等,角相等.10、D【解析】【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得【详解】点A(1+m,1n)与点B(3,2)关于y轴对称,1+m=3,1n=2,解得:m=2,n=1,所以m+n=21=1,故选D【考点】本题考查了关于y轴对称的点,熟练掌握关于y轴对称

    14、的两点的横坐标互为相反数,纵坐标不变是解题的关键二、填空题1、40【解析】【分析】由ACD=110,可知ACB=70;由AB=AC,可知B=ACB=70;利用三角形外角的性质可求出A.【详解】解:ACD=110,ACB=180-110=70;AB=AC,B=ACB=70;A=ACD-B=110-70=40.故答案为40.【考点】本题考查了等边对等角和三角形外角的性质.2、36【解析】【分析】根据等腰三角形的性质和三角形的内角和即可得到结论【详解】等腰三角形的一个底角为,等腰三角形的顶角,故答案为【考点】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键3、10【解析】【分析】过点

    15、E作,垂足为F,延长AD到H,交BC于点H,过点D作,垂足为G,由直角三角形中所对的直角边是斜边的一半可知,然后由等腰三角形三线合一可知,然后再证明四边形DGFH是矩形,从而得到,最后根据计算即可.【详解】解;过点E作,垂足为F,延长AD到H,交BC于点H,过点D作,垂足为G,又,AD平分,且,四边形DGFH是矩形.故答案为:10.【考点】本题主要考查的是等腰三角形的性质,含直角三角形的性质以及矩形的性质和判定,根据题意构造含的直角三角形是解题的关键.4、18【解析】【分析】【详解】解:根据折叠前后角相等可知,B=DCB=30,ADC=ACD=60,AC=AD=DC=6,ADC的周长是18cm

    16、故答案为8.5、3cm【解析】【分析】由已知条件,根据垂直平分线的性质得出ABBC,可得到ABDDBC,再利用角平分线上的点到角两边的距离相等得到答案【详解】解:过点P作PMAB与点M,BD垂直平分线段AC,ABCB,ABDDBC,即BD为角平分线,AE7cm,AP4cm,AEAP3cm,又PMAB,PECB,PMPE3(cm)故答案为:3cm【考点】本题综合考查了线段垂直平分线的性质及角平分线的性质,线段垂直平分线上的点到线段两端的距离相等,角平分线上的点到角两边的距离相等,灵活应用线段垂直平分线及角平分线的性质是解题的关键.三、解答题1、 (1)25(2)当点P在线段BE上时,250;当点

    17、P在线段CE上时,250【解析】【分析】(1)由B40,ACB90,得BAC50,根据AE平分BAC,P与E重合,可得ACD,从而ACBACD;(2)分两种情况:当点P在线段BE上时,可得ADCACD90,根据ADCBADBBCD,即可得250;当点P在线段CE上时,延长AD交BC于点F,由ADCACD90,ADCAFCABCBAD+可得9040,即250(1)解:B40,ACB90,BAC50,AE平分BAC,EACBAC25,P与E重合,D在AB边上,AECD,ACD65,ACBACD25;(2)如图1,当点P在线段BE上时,ADCACD90,ADCBADBBCD,9040,250;如图2

    18、,当点P在线段CE上时,延长AD交BC于点F,ADCACD90,ADCAFCABCBAD+40,9040,250【考点】本题考查三角形综合应用,涉及轴对称变换,三角形外角等于不相邻的两个内角的和的应用,解题的关键是掌握轴对称的性质,能熟练运用三角形外角的性质2、(1)详见解析;(2)详见解析.【解析】【分析】(1)画出点B关于直线AC的对称点D即可解决问题(2)将四边形ABCD各个点向下平移5个单位即可得到四边形ABCD【详解】(1)点D及四边形ABCD的另两条边如图所示(2)得到的四边形ABCD如图所示【考点】本题考查平移变换、轴对称的性质,解题的关键是理解轴对称的意义,图形的平移实际是点在

    19、平移3、1【解析】【分析】先根据、关于轴对称,求出a和b的值,然后代入计算即可【详解】解:、关于轴对称,解得,=【考点】本题考查了关于y轴对称的点的坐标特征,解二元一次方程组,求代数式的值,熟练掌握关于y轴对称的点,纵坐标相同,横坐标互为相反数是解答本题的关键4、 (1)见详解(2)见详解【解析】【分析】(1)根据等腰三角形三线合一的性质得到ADBC,然后根据CEAD即可得到结论;(2)根据BAC=120,得到BAD=60, EAC =60,由CEAD得到EAC =E=ECA=60,即可证得结论(1)证明:AB=AC,点D是BC的中点,ADBC,又CEAD,ECBC;(2)解:ACE是等边三角

    20、形,理由如下:BAC=120,BAD=BAC =60, EAC =60,又CEAD,E=60,EAC =E=ECA=60,ACE是等边三角形.【考点】本题考查了等腰三角形的性质,平行线的性质,等边三角形的判定,熟练掌握性质定理是解题的关键5、(1),;(2)作图见解析;见解析【解析】【分析】(1)结合等腰三角形和等边三角形的性质,可得ABD=ADB,从而求解出角度后,再计算BDF即可;(2)根据尺规作图作角平分线的方法画出的平分线即可;设ACM=BCM=,由AB=AC,推出ABC=ACB=2,可得NAC=NCA=,DAN=60+,由ABNADN(SSS),推出ABN=ADN=30,BAN=DAN=60+,BAC=60+2,在ABC中,根据BAC+ACB+ABC=180,构建方程求出,再证明MNB=MBN即可解决问题【详解】(1),为等边三角形,又E为的中点,由“三线合一”知,;(2)如图所示:利用尺规作图的方法得到CP,交于点M,交于点N;如图所示,连接,平分,设,在等边三角形中,为的中点,在和中,在中,【考点】本题考查全等三角形的判定和性质,等边三角形的性质,等腰三角形的判定和性质等知识,解题的关键是灵活运用各类图形的性质进行综合分析

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年度人教版八年级数学上册第十三章轴对称同步测评试题(含详细解析).docx
    链接地址:https://www.ketangku.com/wenku/file-641754.html
    关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1