2022-2023学年度人教版八年级数学上册第十二章全等三角形定向测评试题(含解析).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 度人 八年 级数 上册 第十二 全等 三角形 定向 测评 试题 解析
- 资源描述:
-
1、八年级数学上册第十二章全等三角形定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、作平分线的作图过程如下:作法:(1)在和上分别截取、,使(2)分别以,为圆心,大于的长为半径作弧,两弧交于点(3)作
2、射线,则就是的平分线用下面的三角形全等的判定解释作图原理,最为恰当的是()ABCD2、下列说法正确的是()近似数精确到十分位;在,中,最小的是;如图所示,在数轴上点所表示的数为;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;如图,在内一点到这三条边的距离相等,则点是三个角平分线的交点A1B2C3D43、如图,已知能直接判断的方法是()ABCD4、如图,在和中,则()A30B40C50D605、如图,ABC中,已知B=C,点E,F,P分别是AB,AC,BC上的点,且BE=CP,BP=CF,若A=112,则EPF的度数是()A34B36C38D406、如图,
3、与相交于点O,不添加辅助线,判定的依据是()ABCD7、如图是用直尺和圆规作一个角等于已知角的示意图,说明的依据是()ABCD8、如图,在ABC和DEF中,ABDE,ABDE,运用“SAS”判定ABCDEF,需补充的条件是()AACDFBADCBECFDACBDFE9、如图,已知,用尺规作它的角平分线如图,步骤如下:第一步:以B为圆心,以a为半径画弧,分别交射线,于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在内部交于点P;第三步;画射线,射线即为所求下列叙述不正确的是()AB作图的原理是构造三角形全等C由第二步可知,D的长10、已知,则为()A锐角三角形B钝角三角形C直角三角形
4、D以上都有可能第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在ABC中,AB=4,AC=3,AD是ABC的角平分线,则ABD与ACD的面积之比是_2、如图,小明与小红玩跷跷板游戏,如果跷跷板的支点O(即跷跷板的中点)至地面的距离是50cm,当小红从水平位置CD下降30cm时,这时小明离地面的高度是_cm3、如图,已知,则等于_4、如图,点,在同一直线上,若线段与线段的长度之比为,则线段与线段的长度之比为_5、如图,AD,BE是的两条高线,只需添加一个条件即可证明(不添加其它字母及辅助线),这个条件可以是_(写出一个即可)三、解答题(5小题,每小题10分,共计50分)1
5、、小明和小亮在学习探索三角形全等时,碰到如下一题:如图1,若AC=AD,BC=BD,则ACB与ADB有怎样的关系?(1)请你帮他们解答,并说明理由(2)细心的小明在解答的过程中,发现如果在AB上任取一点E,连接CE、DE,则有CE=DE,你知道为什么吗?(如图2)(3)小亮在小明说出理由后,提出如果在AB的延长线上任取一点P,也有第2题类似的结论请你帮他画出图形,并证明结论2、在中,D为BC延长线上一点,点E为线段AC,CD的垂直平分线的交点,连接EA,EC,ED(1)如图1,当时,则_;(2)当时,如图2,连接AD,判断的形状,并证明;如图3,直线CF与ED交于点F,满足P为直线CF上一动点
6、当的值最大时,用等式表示PE,PD与AB之间的数量关系为_,并证明3、正方形ABCD中,E为BC上的一点,F为CD上的一点,求的度数4、在中,直线经过点C,且于D,于E,(1)当直线绕点C旋转到图1的位置时,显然有:(不必证明);(2)当直线绕点C旋转到图2的位置时,求证:;(3)当直线MN绕点C旋转到图3的位置时,试问、具有怎样的等量关系?请直接写出这个等量关系5、如图,在中,分别过点B,C向过点A的直线作垂线,垂足分别为点E,F (1)如图,过点A的直线与斜边BC不相交时,求证:;(2)如图,其他条件不变,过点A的直线与斜边BC相交时,若,试求EF的长-参考答案-一、单选题1、A【解析】【
7、分析】根据作图过程可得OD=OE,CE=CD,根据OC为公共边,利用SSS即可证明OCEOCD,即可得答案【详解】分别以,为圆心,大于的长为半径作弧,两弧交于点;CE=CD,在OCE和OCD中,OCEOCD(SSS),故选:A【考点】本题考查全等三角形的判定,正确找出相等的线段并熟练掌握全等三角形的判定定理是解题关键2、B【解析】【分析】根据近似数的精确度定义,可判断;根据实数的大小比较,可判断;根据点在数轴上所对应的实数,即可判断;根据反证法的概念,可判断;根据角平分线的性质,可判断【详解】近似数精确到十位,故本小题错误;,最小的是,故本小题正确;在数轴上点所表示的数为,故本小题错误;用反证
8、法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角或三个钝角”,故本小题错误;在内一点到这三条边的距离相等,则点是三个角平分线的交点,故本小题正确故选B【考点】本题主要考查近似数的精确度定义,实数的大小比较,点在数轴上所对应的实数,反证法的概念,角平分线的性质,熟练掌握上述知识点,是解题的关键3、A【解析】【分析】根据三角形全等的判定定理解答.【详解】在ABC和DCB中,,(SAS),故选:A.【考点】此题考查全等三角形的判定定理:SSS、SAS、ASA、AAS、HL,根据已知条件找到全等所需的对应相等的边或角是解题的关键.4、D【解析】【分析】由题意可证,有,由三角
9、形内角和定理得,计算求解即可【详解】解:ABC和ADC均为直角三角形在和中故选D【考点】本题考查了三角形全等,三角形的内角和定理解题的关键在于找出角度的数量关系5、A【解析】【分析】由三角形内角和定理可得B=C=34,由EBPPCF可得EPB=PFC,再由三角形外角的性质便可解答;【详解】解:BAC中,B=C,A=112,则B=C=34,EBP和PCF中:BE=CP,EBP=PCF,BP=CF,EBPPCF(SAS),EPB=PFC,BPF=EPB+EPF=C+PFC,EPF=C=34,故选:A【考点】本题考查了三角形内角和定理,全等三角形的判定和性质,三角形外角的性质;掌握全等三角形的判定定
10、理和性质是解题关键6、B【解析】【分析】根据,正好是两边一夹角,即可得出答案【详解】解:在ABO和DCO中,故B正确故选:B【考点】本题主要考查了全等三角形的判定,熟练掌握两边对应相等,且其夹角也对应相等的两个三角形全等,是解题的关键7、B【解析】【分析】由作法易得OD=OD,OC=OC,CD=CD,依据SSS可判定CODCOD【详解】解:由作法易得OD=OD,OC=OC,CD=CD,依据SSS可判定CODCOD,故选B【考点】本题主要考查了尺规作图作已知角相等的角,解题的关键在于能够熟练掌握全等三角形的判定条件8、C【解析】【分析】证出ABCDEF,由SAS即可得出结论【详解】解:补充BEC
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-641907.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
