2022-2023学年度人教版八年级数学上册第十四章整式的乘法与因式分解综合测评练习题(含答案解析).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 度人 八年 级数 上册 第十四 整式 乘法 因式分解 综合 测评 练习题 答案 解析
- 资源描述:
-
1、八年级数学上册第十四章整式的乘法与因式分解综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、计算的结果是()ABCD2、下列计算正确的是()ABCD3、下列各式变形中,是因式分解的是()ABCD4、
2、如图,从边长为()cm的正方形纸片中剪去一个边长为()cm的正方形(),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()ABCD5、计算()201932020 的结果为 ()A1B3CD20206、要使多项式不含的一次项,则与的关系是()A相等B互为相反数C互为倒数D乘积为7、若,则()ABC3D118、计算的结果为()ABCD9、计算(-a)3a结果正确的是Aa2B-a2C-a3D-a410、若,则、的值为()A,B,C,D,第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、多项式2x4(a+1)x3+(b2)x23x1,不含x3项和x2项,则ab_2
3、、某班黑板是一个长方形,它的面积为6a2-9ab+3a,已知这个长方形的长为3a,则宽为_3、因式分解:(x+2)xx2=_4、已知,则的值为_5、已知,则_三、解答题(5小题,每小题10分,共计50分)1、已知:x2y2=12,x+y=3,求2x22xy的值2、计算:(a+1)(a3)(a2)23、先化简,再求值:,其,4、先化简,再求值:,其中5、我们知道形如的二次三项式可以分解因式为,所以但小白在学习中发现,对于还可以使用以下方法分解因式这种在二次三项式中先加上9,使它与的和成为一个完全平方式,再减去9,整个式子的值不变,从而可以进一步使用平方差公式继续分解因式了(1)请使用小白发现的方
4、法把分解因式;(2)填空:;(3)请用两种不同方法分解因式-参考答案-一、单选题1、B【解析】【分析】根据幂的乘方的性质和同底数幂的乘法计算即可.【详解】解:=故选B.【考点】本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键.2、B【解析】【分析】根据乘方运算法则和指数的乘法运算法则判断各选项即可【详解】A中,错误;B中,正确;C中,错误;D中,错误故选:B【考点】本题考查乘方运算和指数的乘法运算,乘方运算法则和指数乘法运算法则容易混淆,需要关注3、D【解析】【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案【详解】解:A、等式的右边不是整式的积的形
5、式,故A错误;B、等式右边分母含有字母不是因式分解,故B错误;C、等式的右边不是整式的积的形式,故C错误;D、是因式分解,故D正确;故选D【考点】本题考查了因式分解的定义,因式分解是把一个多项式转化成几个整式乘积的形式4、D【解析】【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算【详解】解:矩形的面积为:(a4)2(a1)2(a28a16)(a22a1)a28a16a22a16a15.故选:D5、B【解析】【分析】直接利用积的乘方运算法则将原式变形求出答案【详解】解:3故选:B【考点】此题主要考查了积的乘方运算,正确利用积的乘方法则将原式变形是解题关键6、A【解析】【分
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-642196.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2021秋七年级语文上册 周末作业(十一)习题课件 新人教版.pptx
