2022-2023学年度北师大版八年级数学上册第一章勾股定理定向测试试题(解析卷).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年度 北师大 八年 级数 上册 第一章 勾股定理 定向 测试 试题 解析
- 资源描述:
-
1、北师大版八年级数学上册第一章勾股定理定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,中,将折叠,使点C与的中点D重合,折痕交于点M,交于点N,则线段的长为().ABC3D2、我图古代数学著作
2、九章算术中有这样一个问题:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深几何?(注:丈、尺是长度单位,1丈=10尺 )意思为:如图,有一个边长为1丈的正方形水池,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的岸边,它的顶端恰好碰到池边的水面则这根芦苇的长度是()A5尺B10尺C12尺D13尺3、如图,点,在直线的同侧,到的距离,到的距离,已知,是直线上的一个动点,记的最小值为,的最大值为,则的值为()A160B150C140D1304、如图,在ABC中,AB6,AC9,ADBC于D,M为AD上任一点,则MC2MB2等于()A29B32C36D455、如图,
3、三角形纸片ABC,AB=AC,BAC=90,点E为AB中点,沿过点E的直线折叠,使点B与点A重合,折痕现交于点F,已知EF=,则BC的长是()AB3C3D36、在ABC中,那么ABC是()A等腰三角形B钝角三角形C直角三角形D等腰直角三角形7、如图,在77的正方形网格中,每个小正方形的边长为1,画一条线段AB=,使点A,B在小正方形的顶点上,设AB与网格线相交所成的锐角为,则不同角度的有()A1种B2种C3种D4种8、如图,正方形的边长为10,连接,则线段的长为()ABCD9、如图,ABC中,以其三边分别向外侧作正方形,然后将整个图形放置于如图所示的长方形中,若要求图中两个阴影部分面积之和,则
4、只需知道()A以BC为边的正方形面积B以AC为边的正方形面积C以AB为边的正方形面积DABC的面积10、我国古代数学著作九章算术中有这样一个问题:“今有方池一丈,葭生其中央,出水一 尺,引葭赴岸,适与岸齐水深、葭长各几何? ”其大意是:如图,有一个水池,水面是 一个边长为 10 尺 (丈、尺是长度单位,1 丈10 尺) 的正方形,在水池正中央有一根芦苇, 它高出水面 1 尺如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面水 的深度与这根芦苇的长度分别是多少?若设这跟芦苇的长度为 x 尺,根据题意,所列方程正 确的是()A102(x1)2x2B102(x1)2 (x1)2C52(x1
5、)2x2D52(x1)2 (x1)2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若ABC中,cm,cm,高cm,则BC的长为_cm2、如图,一艘轮船位于灯塔P的南偏东方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东方向上的B处,此时B处与灯塔P的距离为_海里(结果保留根号)3、小聪准备测量河水的深度,他把一根竹竿插到离岸边远的水底,竹竿高出水面,把竹竿的顶端拉向岸边,竹竿顶和岸边的水面刚好相齐,则河水的深度为_4、九章算术中记载着这样一个问题:已知甲、乙两人同时从同一地点出发,甲的速度为7步/分,乙的速度为3步/分,乙一直向东走,甲先
6、向南走10步,后又斜向北偏东方向走了一段后与乙相遇,那么相遇时,甲、乙各走了多远?解:如图,设甲乙两人出发后x分钟相遇根据勾股定理可列得方程为_5、对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC、BD交于点O若AD=3,BC=5,则_三、解答题(5小题,每小题10分,共计50分)1、如图,有一架秋千,当他静止时,踏板离地的垂直高度,将他往前推送(水平距离)时,秋千的踏板离地的垂直高度,秋千的绳索始终拉得很直,求绳索的长度2、如图,在正方形ABCD中,E是边AB上的一动点,点F在边BC的延长线上,且,连接DE,DF(1)求证:;(2)连接EF,取EF中
7、点G,连接DG并延长交BC于H,连接BG依题意,补全图形;求证:;若,用等式表示线段BG,HG与AE之间的数量关系,请直接写出结论3、如图,点是内一点,把绕点顺时针旋转得到,且,.(1)判断的形状,并说明理由;(2)求的度数.4、勾股定理被誉为“几何明珠”,在数学的发展历程中占有举足轻重的地位它是初中数学中的重要知识点之一,也是初中学生以后解决数学问题和实际问题中常常运用到的重要知识,因此学好勾股定理非常重要学习数学“不仅要知其然,更要知其所以然”,所以,我们要学会勾股定理的各种证明方法请你利用如图图形证明勾股定理:已知:如图,四边形ABCD中,BDCD,AEBD于点E,且ABEBCD求证:A
8、B2BE2+AE25、如图,烟台市正政府决定在相距50km的A、B两村之间的公路旁E点,修建一个大樱桃批发市场,且使C、D两村到E点的距离相等,已知DAAB于A,CBAB于B,DA30km,CB20km,那么大樱桃批发市场E应建什么位置才能符合要求?-参考答案-一、单选题1、D【解析】【分析】由折叠的性质可得DN=CN,根据勾股定理可求DN的长,即可得出结果【详解】解:D是AB中点,AB=4,AD=BD=2,将ABC折叠,使点C与AB的中点D重合,DN=CN,BN=BC-CN=6-DN,在RtDBN中,DN2=BN2+DB2,DN2=(6-DN)2+4,DN=,CN=DN=,故选:D【考点】本
9、题考查了翻折变换、折叠的性质、勾股定理,熟练运用折叠的性质是本题的关键2、D【解析】【分析】依题意,芦苇的长度为直角三角形的斜边,水深为一直角边,另一直角边为5尺,由勾股定理即可列出方程,进而得到答案【详解】解:设水深x尺,则芦苇的长度为(x+1)尺,依题意,由勾股定理,得:,解得,所以芦苇的长度为13尺故选D【考点】本题考查勾股定理的应用,将题目描述问题转化成直角三角形求边长的问题是解题的关键3、A【解析】【分析】作点A关于直线MN的对称点,连接交直线MN于点P,则点P即为所求点,过点作直线,在根据勾股定理求出线段的长,即为PA+PB的最小值,延长AB交MN于点,此时,由三角形三边关系可知,
10、故当点P运动到时最大,过点B作由勾股定理求出AB的长就是的最大值,代入计算即可得【详解】解:如图所示,作点A关于直线MN的对称点,连接交直线MN于点P,则点P即为所求点,过点作直线,在中,根据勾股定理得,即PA+PB的最小值是;如图所示,延长AB交MN于点,当点P运动到点时,最大,过点B作,则, ,在中,根据勾股定理得,即,故选A【考点】本题考查了最短线路问题和勾股定理,解题的关键是熟知两点之间线段最短及三角形的三边关系4、D【解析】【分析】在RtABD及RtADC中可分别表示出BD2及CD2,在RtBDM及RtCDM中分别将BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出结
11、果【详解】解:在RtABD和RtADC中,BD2AB2AD2,CD2AC2AD2,在RtBDM和RtCDM中,BM2BD2MD2AB2AD2MD2,MC2CD2MD2AC2AD2MD2,MC2MB2(AC2AD2MD2)(AB2AD2MD2)AC2AB245故选:D【考点】本题考查了勾股定理的知识,题目有一定的技巧性,比较新颖,解答本题需要认真观察,分别两次运用勾股定理求出MC2和MB2是本题的难点,重点还是在于勾股定理的熟练掌握5、B【解析】【分析】折叠的性质主要有:1.重叠部分全等;2.折痕是对称轴,对称点的连线被对称轴垂直平分. 由折叠的性质可知,所以可求出AFB=90,再直角三角形的性
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-643351.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2021秋五年级英语上册 Unit 3 What would you like阅读训练习题课件 人教PEP.pptx
