分享
分享赚钱 收藏 举报 版权申诉 / 27

类型2022年人教版九年级数学上册第二十四章圆专题攻克试卷(含答案详解).docx

  • 上传人:a****
  • 文档编号:696088
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:27
  • 大小:495.54KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 年人教版 九年级 数学 上册 第二 十四 专题 攻克 试卷 答案 详解
    资源描述:

    1、人教版九年级数学上册第二十四章圆专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB是半圆的直径,点D是弧AC的中点,ABC50,则BCD()A105B110C115D1202、如图,在等腰

    2、RtABC中,ACBC,点P在以斜边AB为直径的半圆上,M为PC的中点当点P沿半圆从点A运动至点B时,点M运动的路径长是()ABCD23、已知一个扇形的弧长为,圆心角是,则它的半径长为( )A6cmB5cmC4cmD3cm4、如图所示,矩形纸片中,把它分割成正方形纸片和矩形纸片后,分别裁出扇形和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则的长为()ABCD5、如图所示,一个半径为r(r1)的图形纸片在边长为10的正六边形内任意运动,则在该六边形内,这个圆形纸片不能接触到的部分面积是()ABCD6、如图,AB是O的直径,点E是AB上一点,过点E作CDAB,交O于点C,D,以下结论正确的是()

    3、A若O的半径是2,点E是OB的中点,则CDB若CD,则O的半径是1C若CAB30,则四边形OCBD是菱形D若四边形OCBD是平行四边形,则CAB607、如图,已知长方形中,圆B的半径为1,圆A与圆B内切,则点与圆A的位置关系是()A点C在圆A外,点D在圆A内B点C在圆A外,点D在圆A外C点C在圆A上,点D在圆A内D点C在圆A内,点D在圆A外8、已知扇形的半径为6,圆心角为则它的面积是()ABCD9、如图,O是RtABC的外接圆,ACB90,过点C作O的切线,交AB的延长线于点D设A,D,则()AB+90C2+90D+29010、已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是()AB

    4、CD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为_2、如图,在中,点是的中点,连接交弦于点,若,则的长是_3、如图,AB是O的弦,点C在过点B的切线上,且OCOA,OC交AB于点P,已知OAB=22,则OCB=_4、如图,AB是O的直径,弦CDAB于点E若AB10,AE1,则弦CD的长是_5、如图,在平面直角坐标系中,点A(0,1)、B(0,1),以点A为圆心,AB为半径作圆,交x轴于点C、D,则CD的长是_三、

    5、解答题(5小题,每小题10分,共计50分)1、如图,AD、BC是O的两条弦,且ABCD,求证:ADBC2、在平面直角坐标系中,平行四边形的顶点A,D的坐标分别是,其中(1)若点B在x轴的上方,求的长;,且证明:四边形是菱形;(2)抛物线经过点B,C对于任意的,当a,m的值变化时,抛物线会不同,记其中任意两条抛物线的顶点为(与不重合),则命题“对所有的a,b,当时,一定不存在的情形”是否正确?请说明理由3、已知:如图,在O中,AB为弦,C、D两点在AB上,且ACBD求证:4、如图,正五边形内接于,为上的一点(点不与点重合),求的余角的度数5、如图,BAC的平分线交ABC的外接圆于点D,ABC的平

    6、分线交AD于点E(1)求证:DEDB;(2)若BAC90,BD4,求ABC外接圆的半径-参考答案-一、单选题1、C【解析】【分析】连接AC,然后根据圆内接四边形的性质,可以得到ADC的度数,再根据点D是弧AC的中点,可以得到DCA的度数,直径所对的圆周角是90,从而可以求得BCD的度数【详解】解:连接AC,ABC50,四边形ABCD是圆内接四边形,ADC130,点D是弧AC的中点,CDAC,DCADAC25,AB是直径,BCA90,BCDBCA+DCA115,故选:C【考点】本题考查圆周角定理、圆心角、弧、弦的关系,解答本题的关键是明确题意,利用数形结合的思想解答2、B【解析】【分析】取AB的

    7、中点O、AC的中点E、BC的中点F,连接OC、OP、OM、OE、OF、EF,如图,利用勾股定理得到AB的长,进而可求出OC,OP的长,求得CMO=90,于是得到点M在以OC为直径的圆上,然后根据圆的周长公式计算点M运动的路径长【详解】解:取AB的中点O、AC的中点E、BC的中点F,连接OC、OP、OM、OE、OF、EF,如图,在等腰RtABC中,AC=BC=2,AB=BC=4,OC=OP=AB=2,ACB=90,C在O上,M为PC的中点,OMPC,CMO=90,点M在以OC为直径的圆上,P点在A点时,M点在E点;P点在B点时,M点在F点O是AB中点,E是AC中点,OE是ABC的中位线,OE/B

    8、C,OE=BC=,OEAC,同理OFBC,OF=,四边形CEOF是矩形,OE=OF,四边形CEOF为正方形,EF=OC=2,M点的路径为以EF为直径的半圆,点M运动的路径长=2=故选:B【考点】本题考查了等腰三角形的性质,勾股定理,正方形的判定与性质,圆周角定理,以及动点的轨迹:点按一定规律运动所形成的图形为点运动的轨迹解决此题的关键是利用圆周角定理确定M点的轨迹为以EF为直径的半圆3、A【解析】【分析】设扇形半径为rcm,根据扇形弧长公式列方程计算即可.【详解】设扇形半径为rcm,则=5,解得r=6cm.故选A.【考点】本题主要考查扇形弧长公式.4、B【解析】【分析】设AB=xcm,则DE=

    9、(6-x)cm,根据扇形的弧长等于圆锥底面圆的周长列出方程,求解即可【详解】设,则DE=(6-x)cm,由题意,得,解得. 故选B【考点】本题考查了圆锥的计算,矩形的性质,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长5、C【解析】【分析】当运动到正六边形的角上时,圆与两边的切点分别为,连接,根据正六边形的性质可知,故,再由锐角三角函数的定义用表示出的长,可知圆形纸片不能接触到的部分的面积,由此可得出结论【详解】解:如图所示,连接,此多边形是正六边形,圆形纸片不能接触到的部分的面积故选:C【考点】本题考查的是正多边形和

    10、圆,熟知正六边形的性质是解答此题的关键6、C【解析】【分析】根据垂径定理,解直角三角形知识,一一求解判断即可【详解】解:A、OCOB2,点E是OB的中点,OE1,CDAB,CEO90,CD2CE, ,本选项错误不符合题意;B、根据,缺少条件,无法得出半径是1,本选项错误,不符合题意;C、A30,COB60,OCOB,COB是等边三角形,BCOC,CDAB,CEDE,BCBD,OCODBCBD,四边形OCBD是菱形;故本选项正确本选项符合题意D、四边形OCBD是平行四边形,OC=OD,所以四边形OCBD是菱形OCBC,OCOB,OCOBBC,BOC60,故本选项错误不符合题意故选:C【考点】本题

    11、考查了圆周角定理,垂径定理,菱形的判定和性质,等边三角形的判定和性质,正确的理解题意是解题的关键7、C【解析】【分析】根据内切得出圆A的半径,再判断点D、点E到圆心的距离即可【详解】圆A与圆B内切,圆B的半径为1圆A的半径为55点D在圆A内在RtABC中,点C在圆A上故选:C【考点】本题考查点与圆的位置关系、圆与圆的位置关系、勾股定理,熟练掌握点与圆的位置关系是关键8、D【解析】【分析】已知扇形的半径和圆心角度数求扇形的面积,选择公式直接计算即可【详解】解:故选:D【考点】本题考查扇形面积公式的知识点,熟知扇形面积公式及适用条件是解题的关键9、C【解析】【分析】连接OC, 由BOC是AOC的外

    12、角,可得BOC2A2,由CD是O的切线,可求OCD90,可得D902即可【详解】连接OC,如图,O是RtABC的外接圆,ACB90,AB是直径,A,OA=OC,BOC是AOC的外角,A=ACO,BOC=A+ACO2A2,CD是O的切线,OCCD,OCD90,D90BOC902,2+90故选:C【考点】本题考查圆的半径相等,三角形外角性质,切线性质,直角三角形两锐角互余性质,掌握圆的半径相等,三角形外角性质,切线性质,直角三角形两锐角互余性质10、B【解析】【分析】根据题意可以求得半径,进而解答即可【详解】因为圆内接正三角形的面积为,所以圆的半径为,所以该圆的内接正六边形的边心距sin601,故

    13、选B【考点】本题考查正多边形和圆,解答本题的关键是明确题意,求出相应的图形的边心距二、填空题1、(2,6)【解析】【分析】此题涉及的知识点是平面直角坐标系图像性质的综合应用过点M作MFCD于F,过C作CEOA于E,在RtCMF中,根据勾股定理即可求得MF与EM,进而就可求得OE,CE的长,从而求得C的坐标【详解】四边形OCDB是平行四边形,点B的坐标为(16,0),CDOA,CD=OB=16,过点M作MFCD于F,则 过C作CEOA于E,A(20,0),OA=20,OM=10,OE=OMME=OMCF=108=2,连接MC, 在RtCMF中, 点C的坐标为(2,6).故答案为(2,6).【考点

    14、】此题重点考察学生对坐标与图形性质的实际应用,勾股定理,注意数形结合思想在解题的关键2、8【解析】【分析】连结OA,OB,点是的中点,半径交弦于点,根据垂径定理可得OCAB,AD=BD,由,求半径OC= 5,OA= 5,在RtOAD中,由勾股定理得DA=即可,【详解】解:连结OA,OB,点是的中点,半径交弦于点,OCAB,AD=BD,OC=OD+CD=3+2=5,OA=OC=5,在RtOAD中,由勾股定理得DA=,AB=2AD=24=8,故答案为8【考点】本题考查垂径定理的推论,勾股定理,线段中点定义,掌握垂径定理的推论,平分弧的直径垂直平分这条弧所对的弦,勾股定理,线段中点定义是解题关键3、

    15、44【解析】【分析】首先连接OB,由点C在过点B的切线上,且OCOA,根据等角的余角相等,易证得CBP=CPB,利用等腰三角形的性质解答即可【详解】连接OB,BC是O的切线,OBBC,OBA+CBP=90,OCOA,A+APO=90,OA=OB,OAB=22,OAB=OBA=22,APO=CBP=68,APO=CPB,CPB=ABP=68,OCB=180-68-68=44,故答案为44【考点】此题考查了切线的性质此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用4、6【解析】【分析】连接OC,根据勾股定理求出CE,根据垂径定理计算即可【详解】连接OC,AB是O的直径,弦C

    16、DAB,CD2CE,OEC90,AB10,AE1,OC5,OE514,在RtCOE中,CE3,CD2CE6,故答案为6【考点】本题考查了垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键5、【解析】【分析】根据题意在中求出,利用垂径定理得出结果【详解】由题意,在中,由垂径定理知,故答案为:【考点】本题考查了勾股定理及垂径定理,熟练掌握垂径定理是解决本题的关键三、解答题1、证明见解析【解析】【分析】根据AB=CD,得出,进而得出,即可解答【详解】证明:AB,CD是O的两条弦,且AB=CD,,,AD=BC【考点】此题考查圆心角、弧、弦的关系,关键是利用三者的关系解

    17、答2、 (1)4;(2)命题正确,证明见解析【解析】【分析】(1)根据平行四边形中AD=BC计算即可;根据距离公式证明AD=AB即可说明四边形是菱形;(2)由BC=AD求出B的横坐标,再在解析式中求出B坐标,即可求出AB的解析式,同时根据顶点坐标特征求出的解析式,再利用反证法证明即可(1)平行四边形A,D的坐标分别是,其中,平行四边形四边形是菱形(2)命题正确,理由如下:抛物线的对称轴为顶点坐标为顶点在定直线上移动即的解析式为,抛物线经过点B,C且对称轴为,B点横坐标为B点坐标为:设直线AB的解析式为则假设对所有的a,b,当时,存在的情形,对所有的a,b,当时,去分母整理得:,此时互相矛盾,假

    18、设不成立对所有的a,b,当时,一定不存在的情形【考点】本题考查平行四边形的性质、菱形的判定、反证法、二次函数的性质解题的关键是利用平行四边形对边相等找关系,最后一问计算量比较大,需要特别注意3、证明见解析【解析】【分析】根据等边对等角可以证得A=B,然后根据SAS即可证得两个三角形全等【详解】证明:OAOB,AB,在OAC和OBD中:,OACOBD(SAS)【考点】本题考查了三角形全等的判定与性质,同圆半径相等正确理解三角形的判定定理是关键4、54【解析】【分析】连接OC,OD求出COD的度数,再根据圆周角定理即可解决问题【详解】如图,连接五边形是正五边形,90-36=54,的余角的度数为54【考点】本题考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型5、 (1)证明见解析(2)2 【解析】【详解】试题分析:由角平分线得出,得出,由圆周角定理得出证出再由三角形的外角性质得出即可得出 由得:,得出由圆周角定理得出是直径,由勾股定理求出即可得出外接圆的半径试题解析:(1)证明:平分 又 平分 连接, 是直径 平分 半径为

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年人教版九年级数学上册第二十四章圆专题攻克试卷(含答案详解).docx
    链接地址:https://www.ketangku.com/wenku/file-696088.html
    关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1