分享
分享赚钱 收藏 举报 版权申诉 / 28

类型2022年人教版九年级数学上册第二十四章圆定向攻克试题(含详细解析).docx

  • 上传人:a****
  • 文档编号:696224
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:28
  • 大小:1.38MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 年人教版 九年级 数学 上册 第二 十四 定向 攻克 试题 详细 解析
    资源描述:

    1、人教版九年级数学上册第二十四章圆定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在四边形ABCD中,则AB()A4B5CD2、如图,是的弦,点在过点的切线上,交于点若,则的度数等于()ABC

    2、D3、如图,已知在中,是直径,则下列结论不一定成立的是()ABCD到、的距离相等4、已知中,点P为边AB的中点,以点C为圆心,长度r为半径画圆,使得点A,P在C内,点B在C外,则半径r的取值范围是()ABCD5、已知圆的半径为扇形的圆心角为,则扇形的面积为()ABCD6、下列语句,错误的是()A直径是弦B相等的圆心角所对的弧相等C弦的垂直平分线一定经过圆心D平分弧的半径垂直于弧所对的弦7、如图1,一个扇形纸片的圆心角为90,半径为6如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A6B69C12D8、已知点在半径为8的外,则()ABCD9

    3、、如图,在ABC中,cosB,sinC,AC5,则ABC的面积是( )A B12C14D2110、如图,正三角形PMN的顶点分别是正六边形ABCDEF三边的中点,则三角形PMN与六边形ABCDEF的面积之比()A1:2B1:3C2:3D3:8第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,是的内接正三角形,点是圆心,点,分别在边,上,若,则的度数是_度2、如图,O是ABC的外接圆,A60,BC6,则O的半径是_3、如图,将绕点顺时针旋转25得到,EF交BC于点N,连接AN,若,则 _4、如图,在O中,CD是直径,弦ABCD,垂足为E,连接BC,若AB=cm,则圆O

    4、的半径为_cm5、如图,边长相等的正五边形和正六边形拼接在一起,则ABC的度数为_三、解答题(5小题,每小题10分,共计50分)1、如图,在O中,ACB=60,求证AOB=BOC=COA.2、如图,一根长的绳子,一端拴在柱子上,另一端拴着一只羊(羊只能在草地上活动),请画出羊的活动区域3、如图,四边形OABC中,OA=OC, BA=BC以O为圆心,以OA为半径作O(1)求证:BC是O的切线:(2)连接BO并延长交O于点D,延长AO交O于点E,与此的延长线交于点F若补全图形;求证:OF=OB4、已知,正方形ABCD中,M、N分别为AD边上的两点,连接BM、CN并延长交于一点H,连接AH,E为BM

    5、上一点,连接AE、CE,ECHMNH90(1)如图1,若E为BM的中点,且DM3AM,求线段AB的长(2)如图2,若点F为BE中点,点G为CF延长线上一点,且EG/BC,CEGE,求证:(3)如图3,在(1)的条件下,点P为线段AD上一动点,连接BP,作CQBP于Q,将BCQ沿BC翻折得到BCl,点K、R分别为线段BC、Bl上两点,且BI3RI,BC4BK,连接CR、IK交于点T,连接BT,直接写出BCT面积的最大值5、如图,四边形内接于,对角线,垂足为,于点,直线与直线于点(1)若点在内,如图1,求证:和关于直线对称;(2)连接,若,且与相切,如图2,求的度数-参考答案-一、单选题1、D【解

    6、析】【分析】延长AD,BC交于点E,则E=30,先在RtCDE中,求得CE的长,然后在RtABE中,根据E的正切函数求得AB的长【详解】如图,延长AD,BC交于点E,则E=30,在RtCDE中,CE=2CD=6(30锐角所对直角边等于斜边的一半),BE=BC+CE=8,在RtABE中,AB=BEtanE=8=.故选D.【考点】本题考查了解直角三角形,特殊角的三角函数值,解此题的关键在于构造一个直角三角形,然后利用锐角三角函数进行解答.2、B【解析】【分析】根据题意可求出APO、A的度数,进一步可得ABO度数,从而推出答案.【详解】,APO=70,AOP=90,A=20,又OA=OB,ABO=2

    7、0,又点C在过点B的切线上,OBC=90,ABC=OBCABO=9020=70,故答案为:B.【考点】本题考查的是圆切线的运用,熟练掌握运算方法是关键.3、A【解析】【分析】根据圆心角、弧、弦之间的关系即可得出答案【详解】在中,弦弦,则其所对圆心角相等,即,所对优弧和劣弧分别相等,所以有,故B项和C项结论正确,AO=DO=BO=CO(SSS)可得出点到弦,的距离相等,故D项结论正确;而由题意不能推出,故A项结论错误故选:A【考点】此题主要考查圆的基本性质,解题的关键是熟知圆心角、弧、弦之间的关系4、D【解析】【分析】根据勾股定理,得AB=5,由P为AB的中点,得CP=,要使点A,P在C内,r3

    8、,r4,从而确定r的取值范围.【详解】点A在C内,r3,点B在C外,r4,故选:D.【考点】本题考查了点和圆的位置关系,利用数形结合思想是解题的关键.5、B【解析】【分析】扇形面积公式为: 利用公式直接计算即可得到答案【详解】解: 圆的半径为扇形的圆心角为, 故选:【考点】本题考查的是扇形的面积的计算,掌握扇形的面积的计算公式是解题的关键6、B【解析】【分析】将每一句话进行分析和处理即可得出本题答案.【详解】A.直径是弦,正确.B.在同圆或等圆中,相等的圆心角所对的弧相等,相等的圆心角所对的弧相等,错误.C.弦的垂直平分线一定经过圆心,正确.D.平分弧的半径垂直于弧所对的弦,正确.故答案选:B

    9、.【考点】本题考查了圆中弦、圆心角、弧度之间的关系,熟练掌握该知识点是本题解题的关键.7、A【解析】【分析】连接OD,如图,利用折叠性质得由弧AD、线段AC和CD所围成的图形的面积等于阴影部分的面积,AC=OC,则OD=2OC=6,CD=3,从而得到CDO=30,COD=60,然后根据扇形面积公式,利用由弧AD、线段AC和CD所围成的图形的面积=S扇形AOD-SCOD,进行计算即可【详解】解:连接OD,如图,扇形纸片折叠,使点A与点O恰好重合,折痕为CD,ACOC,OD2OC6,CD,CDO30,COD60,由弧AD、线段AC和CD所围成的图形的面积S扇形AODSCOD6,阴影部分的面积为6.

    10、故选A【考点】本题考查了扇形面积的计算:阴影面积的主要思路是将不规则图形面积转化为规则图形的面积记住扇形面积的计算公式也考查了折叠性质8、A【解析】【分析】根据点P与O的位置关系即可确定OP的范围【详解】解:点P在圆O的外部,点P到圆心O的距离大于8,故选:A【考点】本题主要考查点与圆的位置关系,关键是要牢记判断点与圆的位置关系的方法9、A【解析】【分析】根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积【详解】解:过点A作ADBC,ABC中,cosB=,sinC=,AC=5,cosB=,B=45,sinC=,AD=3,CD=4,BD=3,则ABC的面积是:AD

    11、BC=3(3+4)=故选A【考点】此题主要考查了解直角三角形的知识,作出ADBC,进而得出相关线段的长度是解决问题的关键10、D【解析】【分析】连接BE,设正六边形的边长为a,首先证明PMN是等边三角形,分别求出PMN,正六边形ABCDEF的面积即可【详解】解:连接BE,设正六边形的边长为a则AFa,BE2a,AFBE,APPB,FNNE,PN(AF+BE)1.5a,同理可得PMMN1.5a,PNPMMN,PMN是等边三角形,故选:D【考点】本题考查正多边形与圆,等边三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型二、填空题1、120【解析】【分析】本题可通过构造辅

    12、助线,利用垂径定理证明角等,继而利用SAS定理证明三角形全等,最后根据角的互换结合同弧所对的圆周角等于圆心角的一半求解本题【详解】连接OA,OB,作OHAC,OMAB,如下图所示:因为等边三角形ABC,OHAC,OMAB,由垂径定理得:AH=AM,又因为OA=OA,故OAHOAM(HL)OAH=OAM又OA=OB,AD=EB,OAB=OBA=OAD,ODAOEB(SAS),DOA=EOB,DOE=DOA+AOE=AOE+EOB=AOB又C=60以及同弧,AOB=DOE=120故本题答案为:120【考点】本题考查圆与等边三角形的综合,本题目需要根据等角的互换将所求问题进行转化,构造辅助线是本题难

    13、点,全等以及垂径定理的应用在圆综合题目极为常见,圆心角、弧、圆周角的关系需熟练掌握2、6【解析】【分析】作直径CD,如图,连接BD,根据圆周角定理得到CBD90,D60,然后利用含30度的直角三角形三边的关系求出CD,从而得到O的半径【详解】解:作直径CD,如图,连接BD,CD为O直径,CBD90,DA60,BDBC66,CD2BD12,OC6,即O的半径是6故答案为6【考点】本题主要考查圆周角的性质,解决本题的关键是要熟练掌握圆周角的性质.3、102.5【解析】【分析】先根据旋转的性质得到,得到点A、N、F、C共圆,再利用,根据平角的性质即可得到答案;【详解】解:如图,AF与CB相交于点O,

    14、连接CF,根据旋转的性质得到:AC=AF,点A、N、F、C共圆,又点A、N、F、C共圆,(平角的性质),故答案为:102.5【考点】本题主要考查了旋转的性质、平角的性质、点共圆的判定,掌握平移的性质是解题的关键;4、2【解析】【详解】解:如图,连接OB 在O中,CD是直径,弦ABCDAE=BE,且OBE是等腰直角三角形AB=cmBE=cmOB=2 cm故答案为:2【考点】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧也考查了圆周角定理和等腰直角三角形的性质5、24【解析】【分析】根据正五边形的内角和和正六边形的内角和公式求得正五边形的每个内角为108和正六边形的每个内角为1

    15、20,然后根据周角的定义和等腰三角形性质可得结论【详解】解:由题意得:正六边形的每个内角都等于120,正五边形的每个内角都等于108BAC=360-120-108=132AB=ACACB=ABC=故答案是:【考点】考查了正多边形的内角与外角、等腰三角形的性质,熟练掌握正五边形的内角和正六边形的内角求法是解题的关键三、解答题1、详见解析.【解析】【详解】试题分析:根据弧相等,则对应的弦相等从而证明AB=AC,则ABC易证是等边三角形,然后根据同圆中弦相等,则对应的圆心角相等即可证得试题解析:证明:,AB=AC,ABC为等腰三角形(相等的弧所对的弦相等)ACB=60ABC为等边三角形,AB=BC=

    16、CAAOB=BOC=COA(相等的弦所对的圆心角相等)2、见解析【解析】【分析】根据题意画出两个扇形即可得到羊的活动区域【详解】解:如图,以点O为圆心,5m长的绳子为半径画弧交草地左边界于点A,交OD的延长线于点B,再以D为圆心,DB长为半径画弧交草地的右边界于点C,则扇形AOB和扇形BDC部分即为羊的活动区域【考点】本题考查了作图应用与设计作图、扇形面积,根据题意画扇形是解决本题的关键3、 (1)证明见解析(2)图见解析(2)证明见解析【解析】【分析】(1)连接AC,根据等腰三角形的性质得到OACOCA,BACBCA,得到OCBOAB90,根据切线的判定定理证明;(2)根据题意画出图形;根据

    17、切线长定理得到BABC,得到BD是AC的垂直平分线,根据垂径定理、圆心角和弧的关系定理得到AOC120,根据等腰三角形的判定定理证明结论【详解】(1)证明:如图1,连接AC, OAOC,OACOCA,BABC,BACBCA,OACBCAOCABCA,即OCBOAB90,OCBC,BC是O的切线;(2)解:补全图形如图2;证明:OAB90,BA是O的切线,又BC是O的切线,BABC,BABC,OAOC,BD是AC的垂直平分线,=,AOC120,AOBCOBCOE60,OBFF30,OFOB【考点】本题考查的是切线的判定、垂径定理、切线长定理的应用,掌握切线的判定定理、圆心角和弧之间的关系定理是解

    18、题的关键4、 (1)4(2)证明见解析(3)【解析】【分析】(1)由正方形ABCD的性质,可得到ABM为直角三角形,再由E为BM中点,得到BM=2AE,最后由勾股定理求得AB的长度;(2)过点A作AYBH于点Y,由EGBC,CEGE,F为BE中点,可得GEFCBF,从而得到BCE为等腰三角形,再根据角的关系,易得ECGECH=BCD=45,得到HFC为等腰直角三角形,再根据ABYBCF,得到BM=CF,AY=BF,从而转化得到结论;(3)当P、D重合时得到最大面积,以B为原点建立直角坐标系,求出坐标和表达式,联立方程组求解,即可得出答案(1)解:四边形ABCD为正方形,且DM3AM,BAM=9

    19、0,AD=AB=4AM,ABM为直角三角形,E为BM的中点,BM=2AE=,在RtABM中,设AM=x,则AB=4x,解得,AB=4;(2)过点A作AYBH于点Y,EG/BC,CEGE,G=BCG=ECG,F为BE的中点,GEFCBF(AAS),GE=BC,BCE为等腰三角形,CFBE,CFE=90;ECHMNH90,MNH=CND,CNDNCD=90,ECH=NCD,ECGECH=BCD=45,HFC为等腰直角三角形,CF=HF;ABECBE=90,CBEBCF=90,ABE=BCF,AB=BC,AYB=BFC=90,ABYBCF(AAS),BY=CF,AY=BF,BY=HFBY-FY=HF

    20、-FYBF=HY=AY,AHY是等腰直角三角形,,;(3)BQC=90,点Q在以BC为直径的半圆弧上运动,当P点与D点重合时,此时Q点离BC最远,QBC和IBC面积最大,此时BCT面积最大;CQBP,CBQ为等腰直角三角形,由翻折可得,CBI为等腰直角三角形,建立如图直角坐标系,作RSBC,TVBC,由(1)中结论可知:B(0,0),C(4,0),I(2,),BI3RI,BC4BK,解得RS=,R,K(1,0),直线KI解析式为:,直线CR解析式为:,联立,解得,即T,【考点】本题属于四边形综合题,考查正方形的性质、全等三角形证明、翻折问题、等腰三角形的性质等,熟练掌握每个性质的核心内容,理清相互之间的联系,属于压轴题5、(1)见解析;(2)【解析】【分析】(1)根据垂直及同弧所对圆周角相等性质,可得,可证与全等,得到,进一步即可证点和关于直线成轴对称;(2)作出相应辅助线如解析图,可得与全等,利用全等三角形的性质及切线的性质,可得,根据平行线的性质及三角形内角和即可得出答案【详解】解:(1)证明:,又同弧所对圆周角相等,在与中,又,点和关于直线成轴对称;(2)如图,延长交于点,连接,、四点共圆,、四点共圆,在与中,为等腰直角三角形,又,与相切,【考点】题目主要考查圆的有关性质、三角形全等、成轴对称、平行线性质等,作出相应辅助线及对各知识点的熟练运用是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年人教版九年级数学上册第二十四章圆定向攻克试题(含详细解析).docx
    链接地址:https://www.ketangku.com/wenku/file-696224.html
    相关资源 更多
  • 县建设局预拌混凝土企业检查通知.docx县建设局预拌混凝土企业检查通知.docx
  • 县建设局新居供热计量管理通知.docx县建设局新居供热计量管理通知.docx
  • 县建筑工程安全监督总结及计划.docx县建筑工程安全监督总结及计划.docx
  • 县庆五一暨劳模表彰大会讲话.docx县庆五一暨劳模表彰大会讲话.docx
  • 县干部学习会议领导讲话.docx县干部学习会议领导讲话.docx
  • 县市场监管局关于“重抓“四立四新” 固守安全“底线””的交流发言.docx县市场监管局关于“重抓“四立四新” 固守安全“底线””的交流发言.docx
  • 县小学防煤气中毒致家长的一封信.docx县小学防煤气中毒致家长的一封信.docx
  • 县宣传部长科技宣传月会上讲话.docx县宣传部长科技宣传月会上讲话.docx
  • 县学习贯彻一法一条的讲话.docx县学习贯彻一法一条的讲话.docx
  • 县委组织部部长2021年度述职述廉报告文稿.docx县委组织部部长2021年度述职述廉报告文稿.docx
  • 县委文明交通行动计划阶段报告.docx县委文明交通行动计划阶段报告.docx
  • 县委常委2021年民主生活会对照检查材料文稿.docx县委常委2021年民主生活会对照检查材料文稿.docx
  • 县委基层创先争优下半年计划.docx县委基层创先争优下半年计划.docx
  • 县委创优下半年打算.docx县委创优下半年打算.docx
  • 县委书记在2021年政法队伍教育整顿总结大会上的发言文稿.docx县委书记在2021年政法队伍教育整顿总结大会上的发言文稿.docx
  • 县委书记在2021年县委办党支部专题组织生活会上的讲话文稿.docx县委书记在2021年县委办党支部专题组织生活会上的讲话文稿.docx
  • 县委书记人代会讨论政府报告讲话(1).docx县委书记人代会讨论政府报告讲话(1).docx
  • 县委书记“改革创新 奋发有为”大讨论交流总结会发言稿与学习中央政治局部署开展“不忘初心牢记使命”主题教育的会议精神发言稿.docx县委书记“改革创新 奋发有为”大讨论交流总结会发言稿与学习中央政治局部署开展“不忘初心牢记使命”主题教育的会议精神发言稿.docx
  • 县城管局关于“以文化强县助推后发崛起”的交流发言.docx县城管局关于“以文化强县助推后发崛起”的交流发言.docx
  • 县城电网改造工程中安全管理应注意的问题.docx县城电网改造工程中安全管理应注意的问题.docx
  • 县国民经济发展计划.docx县国民经济发展计划.docx
  • 县商务局交流发言--稳定外贸增长 助力发展提速.docx县商务局交流发言--稳定外贸增长 助力发展提速.docx
  • 县发改委关于“树立服务发展理念 提高依法行政效能”的交流发言.docx县发改委关于“树立服务发展理念 提高依法行政效能”的交流发言.docx
  • 县区政协主席座谈会讲话.docx县区政协主席座谈会讲话.docx
  • 县区政协主席会讲话.docx县区政协主席会讲话.docx
  • 县加快民营经济发展动员大会上的讲话.docx县加快民营经济发展动员大会上的讲话.docx
  • 县创建青年文明号成立时的讲话.docx县创建青年文明号成立时的讲话.docx
  • 县创先争优调研活动发言.docx县创先争优调研活动发言.docx
  • 县农业农村谋划座谈会讲话.docx县农业农村谋划座谈会讲话.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1