2022年高考数学一轮复习 考点规范练16 导数的综合应用(含解析)新人教A版(理).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年高考数学一轮复习 考点规范练16 导数的综合应用含解析新人教A版理 2022 年高 数学 一轮 复习 考点 规范 16 导数 综合 应用 解析 新人
- 资源描述:
-
1、考点规范练16导数的综合应用基础巩固1.已知函数f(x)=x3+ax2+bx+c在x=-23与x=1处都取得极值.(1)求a,b的值及函数f(x)的单调区间;(2)若对于x-1,2,不等式f(x)c2恒成立,求c的取值范围.解:(1)f(x)=x3+ax2+bx+c,f(x)=3x2+2ax+b.又f(x)在x=-23与x=1处都取得极值,f-23=129-43a+b=0,f(1)=3+2a+b=0,两式联立解得a=-12,b=-2,f(x)=x3-12x2-2x+c,f(x)=3x2-x-2=(3x+2)(x-1),令f(x)=0,得x1=-23,x2=1,当x变化时,f(x),f(x)的变
2、化情况如下表:x-,-23-23-23,11(1,+)f(x)+0-0+f(x)极大值极小值函数f(x)的递增区间为-,-23与(1,+);递减区间为-23,1.(2)f(x)=x3-12x2-2x+c,x-1,2,当x=-23时,f-23=2227+c为极大值,而f(2)=2+c,则f(2)=2+c为最大值,要使f(x)f(2)=2+c,解得c2.c的取值范围为(-,-1)(2,+).2.设函数f(x)=e2x-aln x.(1)讨论f(x)的导函数f(x)的零点的个数;(2)证明:当a0时,f(x)2a+aln 2a.答案:(1)解f(x)=e2x-alnx的定义域为(0,+),f(x)=
3、2e2x-ax.当a0时,f(x)0恒成立,故f(x)没有零点.当a0时,y=e2x在区间(0,+)内单调递增,y=-ax在区间(0,+)内单调递增,f(x)在区间(0,+)内单调递增.当x0时,y=e2x1,y=-ax-,f(x)-.又f(a)0,当a0时,导函数f(x)存在唯一的零点.(2)证明由(1)知,可设导函数f(x)在区间(0,+)内的唯一零点为x0,当x(0,x0)时,f(x)0,f(x)在区间(0,x0)内单调递减,在区间(x0,+)内单调递增,当x=x0时,f(x)取得最小值,最小值为f(x0).2e2x0-ax0=0,f(x0)=a2x0+2ax0+aln2a2a+aln2
4、a,当且仅当x0=12时等号成立,此时a=e.故当a0时,f(x)2a+aln2a.3.已知函数f(x)=aln x(a0),e为自然对数的底数.(1)若过点A(2,f(2)的切线斜率为2,求实数a的值;(2)当x0时,求证:f(x)a1-1x;(3)若在区间(1,e)内,f(x)x-11恒成立,求实数a的取值范围.答案:(1)解f(x)=ax,f(2)=a2=2,a=4.(2)证明令g(x)=alnx-1+1x,则g(x)=a1x-1x2.令g(x)0,得x1;g(x)0,得0x1在区间(1,e)内恒成立,即使alnxx-1-10在区间(1,e)内恒成立,即alnx+1-xx-10在区间(1
5、,e)内恒成立.令h(x)=alnx+1-x,则h(x)=ax-1.令h(x)0,解得xe时,h(x)在区间(1,e)内单调递增,所以h(x)h(1)=0.当1ae时,h(x)在区间(1,a)内单调递增,在区间(a,e)内单调递减,所以只需h(e)0,即ae-1,所以e-1ae;当0a1时,h(x)在区间(1,e)内单调递减,则需h(e)0,而h(e)=a+1-e0,a1).(1)当a1时,求证:函数f(x)在区间(0,+)内单调递增;(2)若函数y=|f(x)-t|-1有三个零点,求t的值.答案:(1)证明f(x)=axlna+2x-lna=2x+(ax-1)lna,由于a1,当x(0,+)
6、时,lna0,ax-10,所以f(x)0,故函数f(x)在区间(0,+)内单调递增.(2)解当a0,a1时,f(x)=2x+(ax-1)lna,f(x)=2+ax(lna)20,f(x)在R上单调递增,f(0)=0,故f(x)=0有唯一解x=0,x,f(x),f(x)的变化情况如下表所示:x(-,0)0(0,+)f(x)-0+f(x)递减极小值递增又函数y=|f(x)-t|-1有三个零点,方程f(x)=t1有三个根,而t+1t-1,所以t-1=f(x)min=f(0)=1,解得t=2.能力提升5.已知函数f(x)=ax2+bx-c-ln x(x0)在x=1处取极值,其中a,b为常数.(1)若a
7、0,求函数f(x)的单调区间;(2)若函数f(x)在x=1处取极值-1-c,且不等式f(x)-2c2恒成立,求实数c的取值范围;(3)若a0,且函数f(x)有两个不相等的零点x1,x2,证明:x1+x22.答案:(1)解因为f(x)=ax2+bx-c-lnx(x0),所以f(x)=2ax+b-1x(x0).因为函数f(x)在x=1处取极值,所以f(1)=2a+b-1=0,所以b=1-2a,所以f(x)=2ax+1-2a-1x=(x-1)1x+2a(x0).当a0时,1x+2a0,则当x(0,1)时,f(x)0.所以函数f(x)的单调递增区间为(1,+),单调递减区间为(0,1.(2)解由(1)
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-716946.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
