2023届新高考数学专题复习 专题19 几何体中与球有关的切、接问题(教师版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023届新高考数学专题复习 专题19 几何体中与球有关的切、接问题教师版 2023 新高 数学 专题 复习 19 几何体 有关 问题 教师版
- 资源描述:
-
1、专题19 几何体中与球有关的切、接问题球的截面的性质(1)球的任何截面是圆面;(2)球心和截面(不过球心)圆心的连线垂直于截面;(3)球心到截面的距离d与球的半径R及截面的半径r的关系为r几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,若球为正方体的外接球,则2Ra;若球为正方体的内切球,则2Ra;若球与正方体的各棱相切,则2Ra.(2)若长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R.(3)正四面体的外接球与内切球的半径之比为31.一、题型选讲题型一 、几何体的外接球解决多面体的外接球问题,关键是确定球心的位置,方法是先选择多面体中的一面,确定此面外接
2、圆的圆心,再过圆心作垂直此面的垂线,则球心一定在此垂线上,最后根据其他顶点确定球心的准确位置对于特殊的多面体还可采用补成正方体或长方体的方法找到球心位置例1、【2020年高考全国卷理数】已知为球的球面上的三个点,为的外接圆,若的面积为,则球的表面积为ABCD【答案】A【解析】设圆半径为,球的半径为,依题意,得,为等边三角形,由正弦定理可得,根据球的截面性质平面,球的表面积.故选:A.本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.例2、【2020年高考天津】若棱长为的正方体的顶点都在同一球面上,则该球的表面积为ABCD【答案】C【解析】这个球是正方体的外接球,其
3、半径等于正方体的体对角线的一半,即,所以,这个球的表面积为.故选:C本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.求多面体的外接球的面积和体积问题,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.例3、(2020届山东省潍坊市高三上学期统考)已知边长为2的等边三角形,为的中点,以为
4、折痕进行折叠,使折后的,则过,四点的球的表面积为( )ABCD【答案】C【解析】边长为2的等边三角形,为的中点,以为折痕进行折叠,使折后的,构成以D为顶点的三棱锥,且三条侧棱互相垂直,可构造以其为长宽高的长方体,其对角线即为球的直径,三条棱长分别为1,1,所以,球面积,故选C.例4、(2020届山东省日照市高三上期末联考)已知四棱锥的体积是,底面是正方形,是等边三角形,平面平面,则四棱锥外接球体积为( )ABCD【答案】A【解析】设的中点为,因为是等边三角形,所以,而平面平面,平面平面,所以平面,四棱锥的体积是,所以边长,设,.故选:A.例5、(2020届山东省德州市高三上期末)中国古代数学经
5、典九章算术系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知平面,四边形为正方形,若鳖臑的外接球的体积为,则阳马的外接球的表面积等于_.【答案】【解析】四边形是正方形,即,且,所以,的外接圆半径为,设鳖臑的外接球的半径,则,解得.平面,可得,.正方形的外接圆直径为,平面,所以,阳马的外接球半径,因此,阳马的外接球的表面积为.故答案为:.题型二、几何体的内切球求解多面体的内切球的问题,一般是将多面体分割为以球心为顶点,多面体的各面为底面的棱锥,利用多面体的体积等于各棱
6、锥的体积之和求内切球的半径例6、【2020年高考全国卷理数】已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_【答案】【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中,且点M为BC边上的中点,设内切圆的圆心为,由于,故,设内切圆半径为,则:,解得:,其体积:.故答案为:.与球有关的组合体问题,一种是内切,一种是外接解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.例7、(
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-752292.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
