4.5.1 函数的零点与方程的解课时教学设计(王春艳)-高中数学新教材必修第一册小单元教学 专家指导(视频 教案).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 4.5.1 函数的零点与方程的解课时教学设计王春艳-高中数学新教材必修第一册小单元教学 专家指导视频 教案 4.5 函数 零点 方程 课时 教学 设计 王春艳 高中数学 新教材 必修 一册 单元
- 资源描述:
-
1、第一课时 函数的零点与方程的解(一)教学内容:函数零点的概念、函数零点存在定理(二)教学目标1.通过类比二次函数的零点的研究方法导出函数的零点的概念 ,能够数学地认识函数与方程的关系,形成将方程问题转化为函数问题、利用函数性质解决数学问题的习惯,发展学生数学抽象的数学核心素养;2.通过观察对应二次函数在区间端点上的函数值的特征,能够导出函数零点存在定理,发展学生数形结合、将形转化为数的能力,发展学生数学抽象素养;3.通过运算具体函数值的过程,感受指定区间内函数值的变化规律,寻找函数零点所在的区间,能够利用信息技术画出图象操作确认,尝试或转化的方法探索方程的有解区间,强化学生估算意识,培养近似计
2、算的习惯,发展数学运算素养.(三)教学重点及难点1. 重点:函数零点的概念、函数零点存在定理2. 难点:数学方式发现函数零点存在定理的理性思维方法(四)教学过程设计引导语 在“函数的应用(一)”的学习中,通过一些实例,我们已初步了解了建立函数模型解决实际问题的过程,学习了用函数描述客观事物变化规律的方法,本单元将继续学习运用函数性质求方程近似解的基本方法(二分法),再结合实例,更深入地理解用函数构建数学模型的基本过程,学习运用模型思想发现和提出问题、分析和解决问题的方法,今天我们先类比二次函数零点的研究方法一起探究:形如“lnx+2x-6=0”的不能用公式求解的方程解的情况,大家思考以下问题:
3、问题1:类比二次函数的零点的研究方法,怎样从函数的观点导出函数零点的概念?师生活动:教师安排学生阅读教科书第147页阅读与思考“中外历史上的方程求解”后,类比二次函数的零点的概念的研究方法,由学生自主画出二次函数的图象,并观察此图象函数值的变化规律,尝试说出一般函数零点概念?追问:你能再举出几个例子说明函数的零点、方程的解、图象与x轴的公共点的关系吗?并用函数的图象和性质找出零点及方程的解?学生举例、画图、观察熟悉的函数图象,体会函数零点、方程的解、图象与x轴的公共点之间的关系,深入理解函数零点的概念的内涵.设计意图:安排学生完成阅读与思考“中外历史上的方程求解”,从高次代数方程解的探索历程,
4、引导学生感受数学文化、体会逻辑的严谨性,理性认识函数与方程的关系,形成将方程的问题转化成函数问题、再利用函数性质解决问题的思维习惯,从具体例子出发,利用从具体到抽象的方法,导出一般函数零点的概念并得到相应的结论,发展学生的数学抽象素养.问题2:观察,如图,二次函数的图象,发现函数在区间2,4上有零点,此时函数图象与x轴有什么关系? 师生活动:教师提出问题,学生观察函数在给定区间内的图象部分与x轴有交点,体会此区间内自变量确定的函数值的变化特征,请说出函数的零点两侧函数值的变化情况.追问1:计算在区间-2,4上是否也有这种特点?学生运算函数得出 ,在区间-2,4上不满足,但函数存在零点,这一现象
5、引发学生深入思考.追问2:你能举出几个例子并画出函数的图象,观察函数零点所在的区间,并计算在区间端点的函数值的积,是否有同样的结论吗?学生通过举例画图分析,函数零点所在区间的特征,能够得出若有区间端点的函数值乘积为负,此区间内一定存在零点,反之,不一定成立.设计意图:观察“函数图象与x轴的关系”的角度,与x轴公共点(3,0),且“穿过”x轴,在“图象连续不断”的条件下,把这两点结合起来,那么在零点所在区间内,零点的两边函数值一定异号.理解“图象穿过x轴”(形)用“函数的取值规律”(数)来表示,在“x=3的两侧函数值异号”,可以取端点为代表,即.追问3:请继续思考自己举出的函数例子,结合图象分析
6、零点存在的条件,在此基础上归纳出零点存在的共同特征,能否概括出表达函数存在零点一个的命题?学生分析举例存在零点的图象特征,归纳函数零点存在的结论,师生共完善,学生写在纸上,投影展示成果,再安排学生阅读教材第143页,“函数零点存在定理”的精准表达,学生思考,引导学生思辨其中关键语句的含义.追问4:你怎样理解定理中的两个条件“在给定区间上连续”和“”?思考定理的用处是什么?学生举反例说明函数在给定区间内连续,结合图象得出如果区间端点乘积为负,则函数在此区间上至少有一个零点,师生总结得出:零点存在定理为研究方程的解提供了理论依据.设计意图:按“导出定理-了解定理-应用定理”途径展开定理的研究,从逻
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-774427.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2020年最新建筑工程材料采购合同范本(正式版).pdf
