分享
分享赚钱 收藏 举报 版权申诉 / 8

类型【五年经典推荐 全程方略】2022届高考数学 专项精析精炼 2022年考点55 不等式选讲(含解析).docx

  • 上传人:a****
  • 文档编号:796969
  • 上传时间:2025-12-15
  • 格式:DOCX
  • 页数:8
  • 大小:266.50KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    五年经典推荐 全程方略
    资源描述:

    1、考点55 不等式选讲一、选择题1.(2022安徽高考理科4)“a0”“是函数在区间内单调递增”的 ( )A. 充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【解题指南】 画出函数的简图,数形结合判断。【解析】选C.由函数在区间内单调递增可得其图象如图所示,,由图象可知选项C正确。二、填空题2. (2022陕西高考理科15)已知a, b, m, n均为正数, 且ab1, mn2, 则(ambn)(bman)的最小值为 . 【解题指南】利用柯西不等式求解.【解析】,且仅当时取最小值 2.【答案】 2.3. (2022陕西高考文科15)设a, bR, |ab|2, 则关

    2、于实数x的不等式的解集是 .【解题指南】利用绝对值不等式的基本知识表示数轴上某点到a,b的距离之和即可得解.【解析】函数的值域为: .所以,不等式的解集为R。【答案】 R. 4.(2022江西高考理科15)在实数范围内,不等式的解集为_.【解题指南】根据绝对值的意义去绝对值符号求解.【解析】由绝对值的意义,等价于,即,即.【答案】.5. (2022重庆高考理科16)若关于实数的不等式无解,则实数的取值范围是 【解题指南】 利用绝对值不等式的性质进行求解.【解析】不等式无解,即因为,所以【答案】 .6. (2022湖北高考理科13)设x,y,zR,且满足:x2+y2+z2=1,x+2y+3z=,

    3、则x+y+z= 【解题指南】根据柯西不等式等号成立的条件,求出相应的x,y,z的值。【解析】由柯西不等式可知:(x+2y+3z)2(x2+y2+z2)(12+22+32),当且仅当时取等号,此时y=2x,z=3x,x+2y+3z=14x=,所以,x+y+z=【答案】 .7. (2022湖南高考理科10)已知a,b,cR,a+2b+3c=6,则a2+4b2+9c2的最小值为.【解题指南】本题是利用柯西不等式求最值 【解析】因为,所以【答案】 12.三、解答题8.(2022辽宁高考文科24)与(2022辽宁高考理科24)相同已知函数当时,求不等式的解集;已知关于的不等式的解集为,求的值。【解题指南

    4、】利用绝对值的意义,去掉绝对值号,转化为整式不等式问题,是常用的化归方法.【解析】当时,当时,由;当时,由,不成立;当时,由;综上,所以,当时,不等式的解集为记则由得,即由已知不等式的解集为亦即的解集为所以解得24. 9.(2022新课标高考文科24)与(2022新课标高考理科24)相同已知函数,()当时,求不等式的解集;()设,且当)时,,求的取值范围.【解析】当时,不等式化为.设函数,则其图象如图所示,从图象可知,当且仅当时,.所以原不等式的解集是.()当时,.不等式化为.所以对都成立,故,即.从而的取值范围为10. (2022湖南高考理科20)在平面直角坐标系xOy中,将从点M出发沿纵、

    5、横方向到达点N的任一路径称为M到N的一条“L路径”.如图所示的路径MM1M2M3N与路径MN1N都是M到N的“L路径”.某地有三个新建的居民区,分别位于平面xOy内三点A(3,20),B(-10,0),C(14,0)处.现计划在x轴上方区域(包含x轴)内的某一点P处修建一个文化中心.(1)写出点P到居民区A的“L路径”长度最小值的表达式(不要求证明).(2)若以原点O为圆心,半径为1的圆的内部是保护区,“L路径”不能进入保护区,请确定点P的位置,使其到三个居民区的“L路径”长度值和最小.【解题指南】(1)本题必须根据题目中图的提示弄清“L路径”是由直线段构成,所以只能用绝对值来表示.(2)先写

    6、出点P到三个居民区的“L路径”,则点P到三个居民区的“L路径”长度值和的最小值为三个“L路径”的最小值之和,再利用绝对值知识去处理. 【解析】设点P的坐标为(x,y),(1)点P到居民区A的“L路径”长度最小值为|x-3|+|y-20|,xR,y0,+).(2)由题意知,点P到三个居民区的“L路径”长度之和的最小值为点P分别到三个居民区的“L路径”长度最小值之和(记为d)的最小值.当y1时,d=|x+10|+|x-14|+|x-3|+2|y|+|y-20|,因为d1(x)=|x+10|+|x-14|+|x-3|x+10|+|x-14|,(*)当且仅当x=3时,不等式(*)中的等号成立,又因为|

    7、x+10|+|x-14|24.(*)当且仅当x-10,14时,不等式(*)中的等号成立.所以d1(x)24,当且仅当x=3时,等号成立,d2(y)=2y+|y-20|21,当且仅当y=1时,等号成立.故点P的坐标为(3,1)时,P到三个居民区的“L路径”长度之和最小,且最小值为45.当0y1时,由于“L路径”不能进入保护区,所以d=|x+10|+|x-14|+|x-3|+1+|1-y|+|y|+|y-20|.此时,d1(x)=|x+10|+|x-14|+|x-3|,d2(y)=1+|1-y|+|y|+|y-20|=22-y21.由知,d1(x)24,故d1(x)+d2(y)45,当且仅当x=3

    8、,y=1时等号成立.综上所述,在点P(3,1)处修建文化中心,可使该文化中心到三个居民区的“L路径”长度之和最小.11.(2022安徽高考理科20)设函数,证明:(1)对每个,存在唯一的,满足;(2)对任意,由(1)中构成的数列满足。【解题指南】 (1)利用导数证明在内单调递增,证明在内有零点;(2)利用(1)得的递减函数,联立与得的关系式,适当放缩证明。【解析】(1)对每个,当x0时,内单调递增,由于,当,又=,所以存在唯一的满足。(2) 当x0时,故由内单调递增知,为单调递减数列,从而对任意,对任意,由于 式减去式并移项,利用得,因此,对任意,都有。12.(2022福建高考理科21)设不等式的解集为A,且()求的值 ()求函数的最小值【解析】()因为,且,所以,且解得,又因为,所以()因为当且仅当(x+1)(x-2)0即-1x2时取到等号,所以f(x)的最小值为3.13. (2022新课标全国高考文科24)与(2022新课标全国高考理科24)相同设a,b,c均为正数,且a+b+c=1,证明:(1)(2)【解题指南】(1)将两边平方,化简整理,借助不等式的性质,即得结论.(2) 证,也即证可分别证然后相加即得.【解析】(1)由得由题设得即所以,即当且仅当“ ”时等号成立。(2)因为当且仅当“”时等号成立.故,即所以.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:【五年经典推荐 全程方略】2022届高考数学 专项精析精炼 2022年考点55 不等式选讲(含解析).docx
    链接地址:https://www.ketangku.com/wenku/file-796969.html
    相关资源 更多
  • 2014届高考物理(广东专用)二轮专题复习课件:第1讲 相互作用与共点力的平衡.ppt2014届高考物理(广东专用)二轮专题复习课件:第1讲 相互作用与共点力的平衡.ppt
  • 2014届高考物理(广东专用)二轮专题复习课件:第11讲 电学实验中常考的4个问题.ppt2014届高考物理(广东专用)二轮专题复习课件:第11讲 电学实验中常考的4个问题.ppt
  • 2014届高考物理(广东专用)二轮专题复习课件:专题六 原子结构和原子核.ppt2014届高考物理(广东专用)二轮专题复习课件:专题六 原子结构和原子核.ppt
  • 2014届高考物理(广东专用)二轮专题复习课件 第9讲 电磁感应现象及电磁感应规律的应用.ppt2014届高考物理(广东专用)二轮专题复习课件 第9讲 电磁感应现象及电磁感应规律的应用.ppt
  • 2014届高考物理(广东专用)三轮考前通关课件:十一、选修3-3.ppt2014届高考物理(广东专用)三轮考前通关课件:十一、选修3-3.ppt
  • 2014届高考物理(广东专用)三轮考前通关课件:十、选修3-5.ppt2014届高考物理(广东专用)三轮考前通关课件:十、选修3-5.ppt
  • 2014届高考物理(广东专用)三轮考前通关课件:九、电学实验.ppt2014届高考物理(广东专用)三轮考前通关课件:九、电学实验.ppt
  • 2014届高考物理(广东专用)三轮考前通关课件:七、恒定电流与交变电流.ppt2014届高考物理(广东专用)三轮考前通关课件:七、恒定电流与交变电流.ppt
  • 2014届高考物理(广东专用)三轮考前通关课件:一、力和直线运动.ppt2014届高考物理(广东专用)三轮考前通关课件:一、力和直线运动.ppt
  • 审计署计算机中级考试感悟与分享.docx审计署计算机中级考试感悟与分享.docx
  • 2014届高考物理(大纲版)一轮复习配套课件:第9章 第3节 电容器与电容 带电粒子在电场中的运动.ppt2014届高考物理(大纲版)一轮复习配套课件:第9章 第3节 电容器与电容 带电粒子在电场中的运动.ppt
  • 2014届高考物理(大纲版)一轮复习配套课件:第8章 第1节 分子动理论 内能.ppt2014届高考物理(大纲版)一轮复习配套课件:第8章 第1节 分子动理论 内能.ppt
  • 2014届高考物理(大纲版)一轮复习配套课件:第7章 第2节 机械波.ppt2014届高考物理(大纲版)一轮复习配套课件:第7章 第2节 机械波.ppt
  • 2014届高考物理(大纲版)一轮复习配套课件:第6章 第2节 动量守恒定律及其应用.ppt2014届高考物理(大纲版)一轮复习配套课件:第6章 第2节 动量守恒定律及其应用.ppt
  • 2014届高考物理(大纲版)一轮复习配套课件:第6章 第1节 冲量 动量 动量定理.ppt2014届高考物理(大纲版)一轮复习配套课件:第6章 第1节 冲量 动量 动量定理.ppt
  • 2014届高考物理(大纲版)一轮复习配套课件:第5章 第4节 功能关系 能量守恒.ppt2014届高考物理(大纲版)一轮复习配套课件:第5章 第4节 功能关系 能量守恒.ppt
  • 2014届高考物理(大纲版)一轮复习配套课件:第5章 第3节 机械能守恒定律.ppt2014届高考物理(大纲版)一轮复习配套课件:第5章 第3节 机械能守恒定律.ppt
  • 2014届高考物理(大纲版)一轮复习配套课件:第2章 第1节 描述运动的基本概念.ppt2014届高考物理(大纲版)一轮复习配套课件:第2章 第1节 描述运动的基本概念.ppt
  • 2014届高考物理(大纲版)一轮复习配套课件:第1章 第2节 力的合成与分解.ppt2014届高考物理(大纲版)一轮复习配套课件:第1章 第2节 力的合成与分解.ppt
  • 2014届高考物理(大纲版)一轮复习配套课件:第15章 第1节 光电效应 波粒二象性 物质波.ppt2014届高考物理(大纲版)一轮复习配套课件:第15章 第1节 光电效应 波粒二象性 物质波.ppt
  • 审计政务公开要点.docx审计政务公开要点.docx
  • 2014届高考物理(大纲版)一轮复习配套课件:热点强化突破(7).ppt2014届高考物理(大纲版)一轮复习配套课件:热点强化突破(7).ppt
  • 2014届高考物理(大纲版)一轮复习配套课件:热点强化突破(6).ppt2014届高考物理(大纲版)一轮复习配套课件:热点强化突破(6).ppt
  • 2014届高考物理(大纲版)一轮复习配套课件:热点强化突破(5).ppt2014届高考物理(大纲版)一轮复习配套课件:热点强化突破(5).ppt
  • 2014届高考物理(大纲版)一轮复习配套课件:热点强化突破(2).ppt2014届高考物理(大纲版)一轮复习配套课件:热点强化突破(2).ppt
  • 2014届高考物理(大纲版)一轮复习配套课件:热点强化突破(1).ppt2014届高考物理(大纲版)一轮复习配套课件:热点强化突破(1).ppt
  • 2014届高考物理(大纲版)一轮复习配套课件:热点强化突破(13).ppt2014届高考物理(大纲版)一轮复习配套课件:热点强化突破(13).ppt
  • 2014届高考物理(大纲版)一轮复习配套课件:实验四 研究匀变速直线运动(共32张PPT).ppt2014届高考物理(大纲版)一轮复习配套课件:实验四 研究匀变速直线运动(共32张PPT).ppt
  • 审计局法律法规学习培训计划.docx审计局法律法规学习培训计划.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1