【备战2022】北京中国人民大学附中高考数学(题型预测 范例选讲)综合能力题选讲 第13讲 复数与三角函数(含详解).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 备战2022
- 资源描述:
-
复数与三角函数题型预测复数与三角有着极为密切的关系,将二者融合在一起考查,历来为命题者所青睐考查的题型往往结合辐角主值、积化和差、和差化积公式等命制范例选讲例1 已知,且,求的值讲解:由于涉及到辐角主值与模,所以,不妨将写成三角形式由,且,所以,又,所以,又,所以又由可知:,所以,所以,点评:本题的突破口在于对,的处理由于分别涉及到角,且互不相关,所以只需将分别化为三角形式即可例2 已知复数满足,且,求的值讲解:设复数的三角形式去解本题是常规思路设,因为,所以,和差化积,得,所以,所以,点评:如果注意到模为1的复数的特性:,则由可得:,即,也即所以,例3 已知(1) 当为何值时,取得最大值,并求此最大值(2) 若,求(用表示)讲解:(1) 所以,当时,取最大值(2)要求,可以把写成三角形式,但较为困难,故可先求出的正切值设=,则由于=所以,因为,所以,的实部=0,的虚部=当时,0,Z所对应的点位于第四象限由于,所以,=当时,0,Z所对应的点位于第一象限(或x轴正半轴)由于,所以,=点评:正确解答本题,一要注意到辐角主值的范围,二要注意到正切函数在上并非单值函数,三要正确运用诱导公式
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-801960.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
