分享
分享赚钱 收藏 举报 版权申诉 / 5

类型【备考2022】2022高考数学 (真题 模拟新题分类汇编) 推理与证明 文.docx

  • 上传人:a****
  • 文档编号:802064
  • 上传时间:2025-12-15
  • 格式:DOCX
  • 页数:5
  • 大小:76.45KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    备考2022
    资源描述:

    1、推理与证明 M1合情推理与演绎推理图1317M12022湖北卷 在平面直角坐标系中,若点P(x,y)的坐标x,y均为整数,则称点P为格点若一个多边形的顶点全是格点,则称该多边形为格点多边形格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如图13中ABC是格点三角形,对应的S1,N0,L4.(1)图中格点四边形DEFG对应的S,N,L分别是_;(2)已知格点多边形的面积可表示为SaNbLc,其中a,b,c为常数,若某格点多边形对应的N71,L18,则S_(用数值作答)17(1)3,1,6(2)79解析 (1)把四边形面积分割,其中四个面积为的三角形,一个面积为1的正方形,故

    2、其面积为S3;四边形内部只有一个格点;边界上有6个格点,故答案为3,6,1.(2)根据图中的格点三角形和四边形可得14bc,3a6bc,再选顶点为(0,0),(2,0),(2,2),(0,2)的格点正方形可得4a8bc,由上述三个方程组解得a1,b,c1,所以SNL1,将已知数据代入得S719179.16B7,M12022山东卷 定义“正对数”:lnx现有四个命题:若a0,b0,则ln(ab)blna;若a0,b0,则ln(ab)ln alnb;若a0,b0,则lnlnalnb;若a0,b0,则ln(ab)lnalnbln 2.其中的真命题有_(写出所有真命题的编号)16解析 中,当ab1时,

    3、b0,a1,lnabln abbln ablna;当0ab0,0a1,lnabblna0,正确中,当0ab1时,左边ln(ab)0,右边lnalnbln a0ln a0,不成立中,当1,即ab时,左边0,右边lnalnb0,左边右边,成立;当1时,左边ln ln aln b0,若ab1时,右边ln aln b,左边右边成立;若0ba1b0,左边ln ln aln bln a,右边ln a,左边右边成立,正确中,若0ab0,左边右边;若ab1,ln(ab)ln 2ln(ab)ln 2ln.又a或b,a,b至少有1个大于1,lnln a或lnln b,即有ln(ab)ln 2ln (ab)ln 2

    4、lnlnalnb,正确13M12022陕西卷 观察下列等式(11)21(21)(22)2213(31)(32)(33)23135照此规律,第n个等式可为_13(n1)(n2)(nn)2n13(2n1)解析 结合已知所给定的几项的特点,可知式子左边共n项,且从(n1)一直到(nn),右侧第一项为2n,连乘的第一项为1,最后一项为(2n1),故所求表达式为:(n1)(n2)(nn)2n13(2n1)M2直接证明与间接证明20M2,D2,D3,D52022北京卷 给定数列a1,a2,an,对i1,2,n1,该数列前i项的最大值记为Ai,后ni项ai1,ai2,an的最小值记为Bi,diAiBi.(1

    5、)设数列an为3,4,7,1,写出d1,d2,d3的值;(2)设a1,a2,an(n4)是公比大于1的等比数列,且a10.证明:d1,d2,dn1是等比数列;(3)设d1,d2,dn1是公差大于0的等差数列,且d10,证明:a1,a2,an1是等差数列20解:(1)d12,d23,d36.(2)证明:因为a10,公比q1,所以a1,a2,an是递增数列因此,对i1,2,n1,Aiai,Biai1.于是对i1,2,n1,diAiBiaiai1a1(1q)qi1.因此di0且q(i1,2,n2),即d1,d2,dn1是等比数列(3)证明:设d为d1,d2,dn1的公差对1in2,因为BiBi1,d

    6、0,所以Ai1Bi1di1BididBidiAi.又因为Ai1maxAi,ai1,所以ai1Ai1Aiai.从而a1,a2,an1是递增数列,因此Aiai(i1,2,n1)又因为B1A1d1a1d1a1,所以B1a1a2an1.因此anB1.所以B1B2Bn1an.所以aiAiBidiandi.因此对i1,2,n2都有ai1aidi1did,即a1,a2,an1是等差数列19M2,H5,H102022北京卷 直线ykxm(m0)与椭圆W:y21相交于A,C两点,O是坐标原点(1)当点B的坐标为(0,1),且四边形OABC为菱形时,求AC的长;(2)当点B在W上且不是W的顶点时,证明:四边形OA

    7、BC不可能为菱形19解:(1)因为四边形OABC为菱形,所以AC与OB相互垂直平分 所以可设A,代入椭圆方程得1,即t.所以|AC|2 .(2)证明:假设四边形OABC为菱形因为点B不是W的顶点,且ACOB,所以k0.由消y并整理得(14k2)x28kmx4m240.设A(x1,y1),C(x2,y2),则,km.所以AC的中点为M.因为M为AC和OB的交点,且m0,k0,所以直线OB的斜率为.因为k1,所以AC与OB不垂直所以OABC不是菱形,与假设矛盾所以当点B不是W的顶点时,四边形OABC不可能是菱形10M22022浙江卷 设a,bR,定义运算“”和“”如下:abab若正数a,b,c,d

    8、满足ab4,cd4,则()Aab2,cd2 Bab2,cd2Cab2,cd2 Dab2,cd210C解析 从定义知,abmin(a,b),即求a,b中的最小值;abmax(a,b),即求a,b中的最大值;假设0a2,0b2,则ab2,d2,则cd4,与已知cd4相矛盾,则假设不成立,故min(a,b)2,即cd2.故选择C.M3数学归纳法M4单元综合12022陕西安康模拟 已知f1(x)cos x,f2(x)f1(x),f3(x)f2(x),f4(x)f3(x),fn(x)fn1(x),则f2022(x)()Asin x Bsin xCcos x Dcos x1D解析 由已知,有f1(x)co

    9、s x,f2(x)sin x,f3(x)cos x,f4(x)sin x,f5(x)cos x,可以归纳出:f4n(x)sin x,f4n1(x)cos x,f4n2(x)sin x,f4n3(x)cos x(nN*)所以f2 011(x)f3(x)cos x.22022诸城模拟 如图K411所示将若干个点摆成三角形图案,每条边(色括两个端点)有n(nl,nN*)个点,相应的图案中总的点数记为an,则()图K411A. B. C. D.2B解析 由图案的点数可知a23,a36,a49,a512,所以an3n3,n2,所以,所以1,选B.32022绍兴模拟 已知123332433n3n13n(n

    10、ab)c对一切nN*都成立,那么a,b,c的值分别为()Aa,bcBabcCa0,bcD不存在这样的a,b,c3A解析 令n1,2,3,得所以a,bc.42022广东汕头模拟 已知2 ,3 ,4 ,若6 (a,t均为正实数),类比以上等式,可推测a,t的值,则at_429解析 类比等式可推测a6,t35,则at29.52022江门联考 已知等差数列an中,有,则在等比数列bn中,会有类似的结论:_.5.解析 由等比数列的性质可知,b1b30b2b29b11b20,所以62022福州模拟 已知点A(x1,ax1),B(x2,ax2)是函数yax(a1)的图像上任意不同两点,依据图像可知,线段AB总是位于A,B两点之间函数图像的上方,因此有结论a成立运用类比思想方法可知,若点A(x1,sin x1),B(x2,sin x2)是函数ysin x(x(0,)的图像上的不同两点,则类似地有_成立6.sin解析 在函数ysin x,x(0,)的图像上任意取不同两点,依据图像可知,线段AB总是位于A,B两点之间函数图像的下方,所以sin.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:【备考2022】2022高考数学 (真题 模拟新题分类汇编) 推理与证明 文.docx
    链接地址:https://www.ketangku.com/wenku/file-802064.html
    相关资源 更多
  • 人教版九年级化学:“有关化学之最”知识归纳练习题(无答案).docx人教版九年级化学:“有关化学之最”知识归纳练习题(无答案).docx
  • 人教版九年级化学:“实验室常见的仪器及使用”质量检测练习题(无答案).docx人教版九年级化学:“实验室常见的仪器及使用”质量检测练习题(无答案).docx
  • 人教版九年级化学:“地壳中元素的分布与含量”能力提升练习题(无答案).docx人教版九年级化学:“地壳中元素的分布与含量”能力提升练习题(无答案).docx
  • 人教版九年级化学:“地壳中元素的分布与含量”知识拓展练习题(无答案).docx人教版九年级化学:“地壳中元素的分布与含量”知识拓展练习题(无答案).docx
  • 人教版九年级化学:“反应类型的判定”能力提升练习题(无答案).docx人教版九年级化学:“反应类型的判定”能力提升练习题(无答案).docx
  • 人教版九年级化学:“反应类型的判定”知识拓展练习题(无答案).docx人教版九年级化学:“反应类型的判定”知识拓展练习题(无答案).docx
  • 人教版九年级化学:“化学相关人物及贡献”质量检测练习题(无答案).docx人教版九年级化学:“化学相关人物及贡献”质量检测练习题(无答案).docx
  • 人教版九年级化学:“化学相关人物及贡献”能力提升检测练习题(无答案).docx人教版九年级化学:“化学相关人物及贡献”能力提升检测练习题(无答案).docx
  • 人教版九年级化学:“化学相关人物及贡献”知识拓展练习题(无答案).docx人教版九年级化学:“化学相关人物及贡献”知识拓展练习题(无答案).docx
  • 人教版九年级化学:“化学相关人物及贡献”知识归纳练习题(无答案).docx人教版九年级化学:“化学相关人物及贡献”知识归纳练习题(无答案).docx
  • 人教版九年级化学:“化学的研究领域和用途”过关练习题(无答案).docx人教版九年级化学:“化学的研究领域和用途”过关练习题(无答案).docx
  • 人教版九年级化学:“化学的研究领域和用途”过关检测题(无答案).docx人教版九年级化学:“化学的研究领域和用途”过关检测题(无答案).docx
  • 人教版九年级化学:“化学的研究领域和用途”练习题(无答案).docx人教版九年级化学:“化学的研究领域和用途”练习题(无答案).docx
  • 人教版九年级化学:“化学的基本知识”应用练习题(无答案).docx人教版九年级化学:“化学的基本知识”应用练习题(无答案).docx
  • 人教版九年级化学:“化学的基本常识”应用达标练习题(无答案).docx人教版九年级化学:“化学的基本常识”应用达标练习题(无答案).docx
  • 人教版九年级化学:“化学性质与物理性质的差别及应用”过关检测练习题(无答案).docx人教版九年级化学:“化学性质与物理性质的差别及应用”过关检测练习题(无答案).docx
  • 人教版九年级化学:“化学性质与物理性质的差别及应用”知识拓展练习题(无答案).docx人教版九年级化学:“化学性质与物理性质的差别及应用”知识拓展练习题(无答案).docx
  • 人教版九年级化学:“化学性质与物理性质的差别及应用”知识归纳练习题(无答案).docx人教版九年级化学:“化学性质与物理性质的差别及应用”知识归纳练习题(无答案).docx
  • 人教版九年级化学:“化学性质与物理性质差别及应用”能力提升练习题(无答案).docx人教版九年级化学:“化学性质与物理性质差别及应用”能力提升练习题(无答案).docx
  • 人教版九年级化学:“几种常见的与化学有关的图标”达标检测练习题(无答案).docx人教版九年级化学:“几种常见的与化学有关的图标”达标检测练习题(无答案).docx
  • 人教版九年级化学:“几种常见的与化学有关的图标”知识拓展练习题(无答案).docx人教版九年级化学:“几种常见的与化学有关的图标”知识拓展练习题(无答案).docx
  • 人教版九年级化学(上)专题化学用语练习题(无答案).docx人教版九年级化学(上)专题化学用语练习题(无答案).docx
  • 人教版九年级化学(上册)说课--氧气的实验室制取与性1.docx人教版九年级化学(上册)说课--氧气的实验室制取与性1.docx
  • 人教版九年级化学(上册)氧气的性质探究实验说课设计.docx人教版九年级化学(上册)氧气的性质探究实验说课设计.docx
  • 人教版九年级化学第四单元课题4《化学式与化合价》.docx人教版九年级化学第四单元课题4《化学式与化合价》.docx
  • 人教版九年级化学第四单元课题3《水的组成》.docx人教版九年级化学第四单元课题3《水的组成》.docx
  • 人教版九年级化学第四单元课题2《水的净化》.docx人教版九年级化学第四单元课题2《水的净化》.docx
  • 人教版九年级化学第四单元课题1《爱护水资源》.docx人教版九年级化学第四单元课题1《爱护水资源》.docx
  • 人教版九年级化学第六单元课题3《二氧化碳和一氧化碳》.docx人教版九年级化学第六单元课题3《二氧化碳和一氧化碳》.docx
  • 相关搜索
    关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1