【新教材精创】5.2.3简单复合函数的导数(教学设计)- (人教A版 高二 选择性必修第二册).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新教材精创
- 资源描述:
-
1、5.2.3简单复合函数的导数 本节课选自2019人教A版高中数学选择性必修二第四章数列,本节课主要学习简单复合函数的导数本节内容通对复合函数的概念及其求导法则的学习,帮助学生进一步提高导数的运算能力,同时提升学生为运用导数解决函数问题,打下坚实的基础。在学习过程中,注意特殊到一般、数形结合、转化与化归的数学思想方法的渗透。课程目标学科素养A.了解复合函数的概念B理解复合函数的求导法则,并能求简单的复合函数的导数1.数学抽象:复合函数 2.逻辑推理:复合函数的求导法则 3.数学运算:复合函数的求导 重点: 复合函数的概念及求导法则难点:复合函数的导数多媒体教学过程教学设计意图核心素养目标一、 新
2、知探究探究1. 如何求y=(1+x)3导数呢?解析:方法一:y=(1+x)3=x3+3x2+3x+1y=(x3)+(3x2)+(3x)+(1)=3x2+6x+3若求y=(1+x)6的导数呢?还有其它求导方法吗?探究2. 如何求y=ln(2x-1)导数呢?分析:函数y=ln(2x-1)不是由基本初等函数通过加、减、乘、除运算得到的,所以无法用现有的方法求它的导数,下面,我们分析这个函数的结构特点若设u=2x-1x12,则y=lnu,从而y=ln2x-1可以看成是由y=lnu和u=2x-1x12,经过“复合”得到的,即y可以通过中间变量u表示为自变量x的函数。如果把y与u的关系记作y=fu,u和x
3、的关系记作u=gx,那么这个“复合”过程可表示为若设y=fu=fgx=ln2x-11复合函数的概念一般地,对于两个函数yf (u)和ug(x),如果通过中间变量u,y可以表示成x的函数,那么称这个函数为函数yf (u)和ug(x)的复合函数,记作_yf (g(x) 思考:函数ylog2(x1)是由哪些函数复合而成的?提示函数ylog2(x1)是由ylog2u及ux1两个函数复合而成的探究3: 求函数y=sin2x的导数 分析:令u=2x,得y=sinu以yx表示y对x的导数,yu表示y对u的导数,一方面,yx =(sin2x)=(2sinxcosx)=2(sinx)cosx+sinx(cosx
4、) =2cosxcosx+sinx(-sinx) =2(cos2x-sin2x) = 2cos2x另一方面yu =(sinu)= cosu,ux =(2x)=2可以发现yx= 2cos2x =cosu2=yu ux2复合函数的求导法则复合函数yf (g(x)的导数和函数yf (u),ug(x)的导数间的关系为yx_,即y对x的导数等于_ _yuux; y对u的导数与u对x的导数的; 乘积 1判断正误(正确的打“”,错误的打“”)(1)函数ysin(x)的复合过程是ysin u,ux ()(2)f (x)ln(3x1)则f (x) ()(3)f (x)x2cos2x,则f (x)2xcos2x2
5、x2sin2x ()提示(2)中f (x). (3)中,f (x)2xcos 2x2x2sin 2x.答案(1)(2)(3)2函数y的导数是()A BC DCy,y2(3x1).3下列对函数的求导正确的是()Ay(12x)3,则y3(12x)2Bylog2(2x1),则yCycos,则ysinDy22x1,则y22xln 2DA中,y6(12x)2,A错误;B中,y,B错误;C中,ysin,C错误;D中y22x1ln 2(2x1)22xln 2.故D正确二、 典例解析例6.求下列函数的导数(1)y=(3x+5)3; (2)y=e-0.05x+1;(3) y=ln(2x-1)解:(1)函数y=(
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-808005.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
