【科学备考】(新课标)2022高考数学二轮复习 第十二章 概率与统计 离散随机变量及其分布列、均值与方差 理(含2022试题).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 科学备考 【科学备考】新课标2022高考数学二轮复习 第十二章 概率与统计 离散随机变量及其分布列、均值与方差 理含2022试题 科学 备考 新课 2022 高考 数学 二轮 复习 第十二 概率
- 资源描述:
-
1、【科学备考】(新课标)2022高考数学二轮复习 第十二章 概率与统计 离散随机变量及其分布列、均值与方差 理(含2022试题) 理数1. (2022陕西,9,5分)设样本数据x1,x2,x10的均值和方差分别为1和4,若yi=xi+a(a为非零常数,i=1,2,10),则y1,y2,y10的均值和方差分别为()A.1+a,4B.1+a,4+aC.1,4D.1,4+a答案 1.A解析 1.x1,x2,x10的均值=1,方差=4,且yi=xi+a(i=1,2,10),y1,y2,y10的均值=(y1+y2+y10)=(x1+x2+x10+10a)=(x1+x2+x10)+a=+a=1+a,其方差=
2、(y1-)2+(y2-)2+(y10-)2=(x1-1)2+(x2-1)2+(x10-1)2=4.故选A.2. (2022河北石家庄高中毕业班复习教学质量检测(二),4) 等差数列的公差为1,随机变量等可能的取值,则方差为( ) 答案 2. B解析 2. 由已知可得:均值,所以=,选B.3.(2022浙江,12,4分)随机变量的取值为0,1,2.若P(=0)=,E()=1,则D()=_.答案 3.解析 3.设P(=1)=p,则P(=2)=-p,从而由E()=0+1p+2=1,得p=.故D()=(0-1)2+(1-1)2+(2-1)2=.4.(2022山东潍坊高三3月模拟考试数学(理)试题,14
3、)如图,茎叶图表示甲、乙两名篮球运动员在五场比赛中的得分,其中一个数字被污损,则甲的平均得分不超过乙的平均得分的概率为 答案 4. 解析 4. 设被污损的数字为x(). 甲的平均分为,乙的平均分为,解得,所以x可以取3、4、5、6、7、8、9共7个数值,所以所求概率为.5. (2022大纲全国,20,12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.()求同一工作日至少3人需使用设备的概率;()X表示同一工作日需使用设备的人数,求X的数学期望.答案 5.查看解析解析 5.记Ai表示事件:同一工作日乙、丙中恰有i人需使用设
4、备,i=0,1,2,B表示事件:甲需使用设备,C表示事件:丁需使用设备,D表示事件:同一工作日至少3人需使用设备.()D=A1BC+A2B+A2C,P(B)=0.6,P(C)=0.4,P(Ai)=0.52,i=0,1,2,(3分)所以P(D)=P(A1BC+A2B+A2C)=P(A1BC)+P(A2B)+P(A2C)=P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P()P(C)=0.31.(6分)()X的可能取值为0,1,2,3,4,则P(X=0)=P(A0)=P()P(A0)P()=(1-0.6)0.52(1-0.4)=0.06,P(X=1)=P(BA0+A0C+A1)=P(B)
5、P(A0)P()+P()P(A0)P(C)+P()P(A1)P()=0.60.52(1-0.4)+(1-0.6)0.520.4+(1-0.6)20.52(1-0.4)=0.25,P(X=4)=P(A2BC)=P(A2)P(B)P(C)=0.520.60.4=0.06,P(X=3)=P(D)-P(X=4)=0.25,P(X=2)=1-P(X=0)-P(X=1)-P(X=3)-P(X=4)=1-0.06-0.25-0.25-0.06=0.38,(10分)数学期望EX=0P(X=0)+1P(X=1)+2P(X=2)+3P(X=3)+4P(X=4)=0.25+20.38+30.25+40.06=2.(
6、12分)6. (2022重庆,18,13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片.()求所取3张卡片上的数字完全相同的概率;()X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数a,b,c满足abc,则称b为这三个数的中位数.)答案 6.查看解析解析 6.()由古典概型中的概率计算公式知所求概率为P=.()X的所有可能值为1,2,3,且P(X=1)=,P(X=2)=,P(X=3)=,故X的分布列为X123P从而E(X)=1+2+3=.7. (2022四川,17,12分)一款击鼓小游戏
7、的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.()设每盘游戏获得的分数为X,求X的分布列;()玩三盘游戏,至少有一盘出现音乐的概率是多少?()玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.答案 7.查看解析解析 7.()X可能的取值为10,20,100,-200.根据题意,有P(X=10)
8、=,P(X=20)=,P(X=100)=,P(X=-200)=.所以X的分布列为X1020100-200P()设“第i盘游戏没有出现音乐”为事件Ai(i=1,2,3),则P(A1)=P(A2)=P(A3)=P(X=-200)=.所以,“三盘游戏中至少有一次出现音乐”的概率为1-P(A1A2A3)=1-=1-=.因此,玩三盘游戏至少有一盘出现音乐的概率是.()X的数学期望为EX=10+20+100-200=-.这表明,获得分数X的均值为负.因此,多次游戏之后分数减少的可能性更大.8. (2022福建,18,13分)为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从
9、一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.()若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:(i)顾客所获的奖励额为60元的概率;(ii)顾客所获的奖励额的分布列及数学期望;()商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.答案 8.查看解析解析 8.()设顾客所获的奖励额为X.(i)依题意,得P(X=6
10、0)=,即顾客所获的奖励额为60元的概率为.(ii)依题意,得X的所有可能取值为20,60.P(X=60)=,P(X=20)=,即X的分布列为X2060P0.50.5所以顾客所获的奖励额的期望为E(X)=200.5+600.5=40(元).()根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),
11、记为方案1.对于面值由20元和40元组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X1,则X1的分布列为X12060100PX1的期望为E(X1)=20+60+100=60,X1的方差为D(X1)=(20-60)2+(60-60)2+(100-60)2=.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X2,则X2的分布列为X2406080PX2的期望为E(X2)=40+60+80=60,X2的
12、方差为D(X2)=(40-60)2+(60-60)2+(80-60)2=.由于两种方案的奖励额的期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.注:第()问,给出方案1或方案2的任一种方案,并利用期望说明所给方案满足要求,给3分;进一步比较方差,说明应选择方案2,再给2分.9. (2022江西,21,14分)随机将1,2,2n(nN*,n2)这2n个连续正整数分成A,B两组,每组n个数.A组最小数为a1,最大数为a2;B组最小数为b1,最大数为b2.记=a2-a1,=b2-b1.(1)当n=3时,求的分布列和数学期望;(2)令C表示事件“与的取值恰好相等”,求事件C发生的
13、概率P(C);(3)对(2)中的事件C,表示C的对立事件,判断P(C)和P()的大小关系,并说明理由.答案 9.查看解析解析 9.(1)当n=3时,的所有可能取值为2,3,4,5.将6个正整数平均分成A,B两组,不同的分组方法共有=20种,所以的分布列为2345PE=2+3+4+5=.(2)和恰好相等的所有可能取值为n-1,n,n+1,2n-2.又和恰好相等且等于n-1时,不同的分组方法有2种;和恰好相等且等于n时,不同的分组方法有2种;和恰好相等且等于n+k(k=1,2,n-2)(n3)时,不同的分组方法有2种,所以当n=2时,P(C)=,(3)由(2)知当n=2时,P()=,因此P(C)P
14、(),而当n3时,P(C)P().理由如下:用数学归纳法来证明:1当n=3时,式左边=4(2+)=4(2+2)=16,式右边=20,所以式成立.那么,当n=m+1时,即当n=m+1时式也成立.综合1,2得,对于n3的所有正整数,都有P(C)P()成立.10. (2022湖北,20,12分)计划在某水库建一座至多安装3台发电机的水电站.过去50年的水文资料显示,水库年入流量X(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年
15、入流量相互独立.()求未来4年中,至多有1年的年入流量超过120的概率;()水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:年入流量X40X120发电机最多可运行台数123若某台发电机运行,则该台年利润为5 000万元;若某台发电机未运行,则该台年亏损800万元.欲使水电站年总利润的均值达到最大,应安装发电机多少台?答案 10.查看解析解析 10.()依题意,p1=P(40X120)=0.1.由二项分布,在未来4年中至多有1年的年入流量超过120的概率为p=(1-p3)4+(1-p3)3p3=+4=0.947 7.()记水电站年总利润为Y(单位:万元
16、).(1)安装1台发电机的情形.由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润Y=5 000,E(Y)=5 0001=5 000.(2)安装2台发电机的情形.依题意,当40X80时,一台发电机运行,此时Y=5 000-800=4 200,因此P(Y=4 200)=P(40X80)=p1=0.2;当X80时,两台发电机运行,此时Y=5 0002=10 000,因此P(Y=10 000)=P(X80)=p2+p3=0.8;由此得Y的分布列如下:Y4 20010 000P0.20.8所以,E(Y)=4 2000.2+10 0000.8=8 840.(3)安装3台发电机的情形.依
17、题意,当40X80时,一台发电机运行,此时Y=5 000-1 600=3 400,因此P(Y=3 400)=P(40X120时,三台发电机运行,此时Y=5 0003=15 000,因此P(Y=15 000)=P(X120)=p3=0.1,由此得Y的分布列如下:Y3 4009 20015 000P0.20.70.1所以,E(Y)=3 4000.2+9 2000.7+15 0000.1=8 620.综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.11. (2022湖南,17,12分)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为和.现安排甲组研发新产品A,乙组研发新产品B.设
18、甲、乙两组的研发相互独立.()求至少有一种新产品研发成功的概率;()若新产品A研发成功,预计企业可获利润120万元;若新产品B研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.答案 11.查看解析解析 11.记E=甲组研发新产品成功,F=乙组研发新产品成功,由题设知P(E)=,P()=,P(F)=,P()=,且事件E与F,E与,与F,与都相互独立.()记H=至少有一种新产品研发成功,则=,于是P()=P()P()=,故所求的概率为P(H)=1-P()=1-=.()设企业可获利润为X(万元),则X的可能取值为0,100,120,220,因为P(X=0)=P()=,P(X=
19、100)=P(F)=,P(X=120)=P(E)=,P(X=220)=P(EF)=.故所求的分布列为X0100120220P数学期望为E(X)=0+100+120+220=140.12. (2022陕西,19,12分)在一块耕地上种植一种作物,每季种植成本为1 000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:作物产量(kg)300500概率0.50.5作物市场价格(元/kg)610概率0.40.6()设X表示在这块地上种植1季此作物的利润,求X的分布列;()若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2 000元的概率.答案 12.查看
20、解析解析 12.()设A表示事件“作物产量为300 kg”,B表示事件“作物市场价格为6元/kg”,由题设知P(A)=0.5,P(B)=0.4,利润=产量市场价格-成本,X所有可能的取值为50010-1 000=4 000,5006-1 000=2 000,30010-1 000=2 000,3006-1 000=800.P(X=4 000)=P()P()=(1-0.5)(1-0.4)=0.3,P(X=2 000)=P()P(B)+P(A)P()=(1-0.5)0.4+0.5(1-0.4)=0.5,P(X=800)=P(A)P(B)=0.50.4=0.2,所以X的分布列为X4 0002 000
21、800P0.30.50.2()设Ci表示事件“第i季利润不少于2 000元”(i=1,2,3),由题意知C1,C2,C3相互独立,由()知,P(Ci)=P(X=4 000)+P(X=2 000)=0.3+0.5=0.8(i=1,2,3),3季的利润均不少于2 000元的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512;3季中有2季利润不少于2 000元的概率为P(C2C3)+P(C1C3)+P(C1C2)=30.820.2=0.384,所以,这3季中至少有2季的利润不少于2 000元的概率为0.512+0.384=0.896.13.(2022安徽,17,12分)甲
22、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.()求甲在4局以内(含4局)赢得比赛的概率;()记X为比赛决出胜负时的总局数,求X的分布列和均值(数学期望).答案 13.查看解析解析 13.用A表示“甲在4局以内(含4局)赢得比赛”,Ak表示“第k局甲获胜”,Bk表示“第k局乙获胜”,则P(Ak)=,P(Bk)=,k=1,2,3,4,5.()P(A)=P(A1A2)+P(B1A2A3)+P(A1B2A3A4)=P(A1)P(A2)+P(B1)P(A2)P(A3)+P(A1)P(B
23、2)P(A3)P(A4)=+=.()X的可能取值为2,3,4,5.P(X=2)=P(A1A2)+P(B1B2)=P(A1)P(A2)+P(B1)P(B2)=,P(X=3)=P(B1A2A3)+P(A1B2B3)=P(B1)P(A2)P(A3)+P(A1)P(B2)P(B3)=,P(X=4)=P(A1B2A3A4)+P(B1A2B3B4)=P(A1)P(B2)P(A3)P(A4)+P(B1)P(A2)P(B3)P(B4)=,P(X=5)=1-P(X=2)-P(X=3)-P(X=4)=.故X的分布列为X2345PEX=2+3+4+5=.14.(2022江苏,22,10分)盒中共有9个球,其中有4个
24、红球、3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数.求X的概率分布和数学期望E(X).答案 14.查看解析解析 14.(1)取到的2个颜色相同的球可能是2个红球、2个黄球或2个绿球,所以P=.(2)随机变量X所有可能的取值为2,3,4.X=4表示的随机事件是“取到的4个球是4个红球”,故P(X=4)=;X=3表示的随机事件是“取到的4个球是3个红球和1个其他颜色的球或3个黄球和1个其他颜色的球”,故P(X=3
25、)=;于是P(X=2)=1-P(X=3)-P(X=4)=1-=.所以随机变量X的概率分布如下表:X234P因此随机变量X的数学期望E(X)=2+3+4=.15.(2022山东,18,12分)乒乓球台面被球网分隔成甲、乙两部分,如图,甲上有两个不相交的区域A,B,乙被划分为两个不相交的区域C,D,某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C上记3分,在D上记1分,其他情况记0分.对落点在A上的来球,队员小明回球的落点在C上的概率为,在D上的概率为;对落点在B上的来球,小明回球的落点在C上的概率为,在D上的概率为.假设共有两次来球且落在A,B上各一次,小明的两次回球互不
26、影响.求:()小明两次回球的落点中恰有一次的落点在乙上的概率;()两次回球结束后,小明得分之和的分布列与数学期望.答案 15.查看解析解析 15.()记Ai为事件“小明对落点在A上的来球回球的得分为i分”(i=0,1,3),则P(A3)=,P(A1)=,P(A0)=1-=;记Bi为事件“小明对落点在B上的来球回球的得分为i分”(i=0,1,3),则P(B3)=,P(B1)=,P(B0)=1-=.记D为事件“小明两次回球的落点中恰有1次的落点在乙上”.由题意,D=A3B0+A1B0+A0B1+A0B3,由事件的独立性和互斥性,P(D)=P(A3B0+A1B0+A0B1+A0B3)=P(A3B0)
27、+P(A1B0)+P(A0B1)+P(A0B3)=P(A3)P(B0)+P(A1)P(B0)+P(A0)P(B1)+P(A0)P(B3)=+=,所以小明两次回球的落点中恰有1次的落点在乙上的概率为.()由题意,随机变量可能的取值为0,1,2,3,4,6,由事件的独立性和互斥性,得P(=0)=P(A0B0)=,P(=1)=P(A1B0+A0B1)=P(A1B0)+P(A0B1)=+=,P(=2)=P(A1B1)=,P(=3)=P(A3B0+A0B3)=P(A3B0)+P(A0B3)=+=,P(=4)=P(A3B1+A1B3)=P(A3B1)+P(A1B3)=+=,P(=6)=P(A3B3)=.可
28、得随机变量的分布列为:012346P所以数学期望E=0+1+2+3+4+6=.16.(2022辽宁,18,12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.()求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;()用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).答案 16.查看解析解析 16.()设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B表示事件“在未来连续3天里有
29、连续2天日销售量不低于100个且另一天销售量低于50个”.因此P(A1)=(0.006+0.004+0.002)50=0.6,P(A2)=0.00350=0.15,P(B)=0.60.60.152=0.108.()X可能取的值为0,1,2,3,相应的概率为P(X=0)=(1-0.6)3=0.064,P(X=1)=0.6(1-0.6)2=0.288,P(X=2)=0.62(1-0.6)=0.432,P(X=3)=0.63=0.216.分布列为X0123P0.0640.2880.4320.216因为XB(3,0.6),所以期望E(X)=30.6=1.8,方差D(X)=30.6(1-0.6)=0.7
30、2.17.(2022天津,16,13分)某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).()求选出的3名同学是来自互不相同学院的概率;()设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.答案 17.查看解析解析 17.()设“选出的3名同学是来自互不相同的学院”为事件A,则P(A)=.所以选出的3名同学是来自互不相同的学院的概率为.()随机变量X的所有可能值为0,1,2,3.P(X=k)=(k=0,1
31、,2,3).所以随机变量X的分布列是X0123P随机变量X的数学期望E(X)=0+1+2+3=.18.(2022北京,16,13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):场次投篮次数命中次数场次投篮次数命中次数主场12212客场1188主场21512客场21312主场3128客场3217主场4238客场41815主场52420客场52512()从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;()从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;()记为表中10个命中次数的平均数.从上述比赛中随机
32、选择一场,记X为李明在这场比赛中的命中次数.比较EX与的大小.(只需写出结论)答案 18.查看解析解析 18.()根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的场次有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.()设事件A为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件B为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件C为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”.则C=AB,A,B独立.根据投篮统计数据,P(A)=,P(B)=
33、.P(C)=P(A)+P(B)=+=.所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为.()EX=.19.(2022课表全国,18,12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:()求这500件产品质量指标值的样本平均数和样本方差s2(同一组中的数据用该组区间的中点值作代表);()由直方图可以认为,这种产品的质量指标值Z服从正态分布N(,2),其中近似为样本平均数,2近似为样本方差s2.(i)利用该正态分布,求P(187.8Z212.2);(ii)某用户从该企业购买了100件这种产品,
34、记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用(i)的结果,求EX.附:12.2.若ZN(,2),则P(-Z +)=0.682 6,P(-2Z +2)=0.954 4.答案 19.查看解析解析 19.()抽取产品的质量指标值的样本平均数和样本方差s2分别为=1700.02+1800.09+1900.22+2000.33+2100.24+2200.08+2300.02=200,s2=(-30)20.02+(-20)20.09+(-10)20.22+00.33+1020.24+2020.08+3020.02=150.()(i)由()知,ZN(200,150),
35、从而P(187.8Z212.2)=P(200-12.2Z200+12.2)=0.682 6.(ii)由(i)知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6,依题意知XB(100,0.682 6),所以EX=1000.682 6=68.26.20.(2022重庆一中高三下学期第一次月考,18)(原创)小张有4张VCD光盘和3张DVD光盘,小王有2张VCD光盘和1张DVD光盘,所有10张光盘都各不相同。现小张和小王各拿一张光盘互相交换,求:(1) 小张恰有4张VCD光盘的概率;(2) 小张的DVD光盘张数的分布列与期望。答案 20.查看解析解析 20.(1) 记事
36、件为“小张和小王各拿一张VCD光盘交换” ,事件为“小张和小王各拿一张DCD光盘交换” ,则互斥,且,故所求概率为;(2) 所有可能取值为,且,。故的分布列如右表,的期望。21. (2022天津蓟县第二中学高三第一次模拟考试,18) 如图, 两点有5条连线并联, 它们在单位时间能通过的信息量依次为. 现从中任取三条线且记在单位时间内通过的信息总量为. (1) 写出信息总量的分布列;(2) 求信息总量的数学期望.答案 21.查看解析解析 21.(1) 由已知, 的取值为 . 2分, , 8分78910的分布列为: 9分(2) 11分 12分22. (2022天津蓟县邦均中学高三第一次模拟考试,1
37、8) 某高校自主招生中,体育特长生的选拔考试,篮球项目初试办法规定:每位考生定点投篮,投进2球立刻停止,但投篮的总次数不能超过5次,投篮时间不能超过半分钟. 某考生参加了这项测试,他投篮的命中率为,假设他各次投篮之间互不影响. 若记投篮的次数为,求的分布列和数学期望答案 22.查看解析解析 22. 由题意, 1分, 2分, 4分, 6分,8分所以的分布列为:9分12分23. (2022山西忻州一中、康杰中学、临汾一中、长治二中四校高三第三次联考,18) 学校设计了一个实验学科的考查方案:考生从6道备选题中一次随机抽取3道题,按照题目要求独立完成全部实验操作,并规定:在抽取的3道题中,至少正确完
38、成其中2道题便可通过考查. 已知6道备选题中考生甲有4道题能正确完成,2道题不能完成;考生乙每题正确完成的概率都为,且每题正确完成与否互不影响. (1)求考生甲正确完成题目个数的分布列和数学期望;(2)用统计学知识分析比较甲、乙两考生哪位实验操作能力强及哪位通过考查的可能性大?答案 23.查看解析解析 23. (1)设考生甲正确完成实验操作的题目个数分别为,则可能取值为1,2, 3 3分所以,考生甲正确完成题目数的分布列为123所以 5分(2)设考生乙正确完成实验操作的题目个数为因为,其分布列为:所以 6分又因为 8分所以又因为, 10分所以从做对题数的数学期望考查,两人水平相当;从做对题数的
39、方差考查,甲较稳定;从至少完成2题的概率考查,甲获得通过的可能性大,因此,可以判断甲的实验操作能力强. 12分24. (2022山西太原高三模拟考试(一),18) 某园艺师培育了两种珍稀树苗A与B,株数分别为12与18,现将这30株树苗的高度编写成如下茎叶图(单位:cm): A B 9157 7 8 9 9 9 8161 2 4 5 8 96 8 5 0172 3 4 5 67 4 2 1180 1 119 在这30株树苗中,树高在175cm以上(包括175cm) 定义为“生长良好” ,树高在175cm以下(不包括175cm) 定义为“非生长良好” ,且只有“B生长良好” 的才可以出售.()
40、对于这30株树苗,如果用分层抽样的方法从“生长良好” 和“非生长良好” 中共抽取5株,再从这5株中任选2株,那么至少有一株“生长良好” 的概率是多少?(II) 若从所有“生长良好” 中选3株,用X表示所选中的树苗中能出售的株树,试写出X的分布列,并求X的数学期望.答案 24.查看解析解析 24.25. (2022山东青岛高三第一次模拟考试, 17) 袋中装有大小相同的黑球和白球共个,从中任取个都是白球的概率为. 现甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取,每次摸取个球,取出的球不放回,直到其中有一人取到白球时终止. 用表示取球终止时取球的总次数. ()求袋中原有白球的个数;()求随
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-810154.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
技术改造借款合同-借款合同_1.pdf
