分享
分享赚钱 收藏 举报 版权申诉 / 26

类型专题01 【五年中考 一年模拟】选择压轴题-备战2023年上海中考数学真题模拟题分类汇编(解析版).docx

  • 上传人:a****
  • 文档编号:827153
  • 上传时间:2025-12-15
  • 格式:DOCX
  • 页数:26
  • 大小:2.37MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    五年中考 一年模拟
    资源描述:

    1、专题01 选择压轴题1(2022上海)有一个正边形旋转后与自身重合,则为A6B9C12D15【答案】【详解】正六边形旋转后不能与自身重合,不合题意;正九边形旋转后不能与自身重合,不合题意;正十二边形旋转后能与自身重合,符合题意;正十五边形旋转后不能与自身重合,不合题意;故选:2(2021上海)如图,长方形中,圆半径为1,圆与圆内切,则点、与圆的位置关系是A点在圆外,点在圆内B点在圆外,点在圆外C点在圆上,点在圆内D点在圆内,点在圆外【答案】【详解】两圆内切,圆心距等于半径之差的绝对值,设圆的半径为,则:,圆半径为1,即圆的半径等于5,由勾股定理可知,点在圆上,点在圆内,故选:3(2020上海)

    2、如果存在一条线把一个图形分割成两个部分,使其中一个部分沿某个方向平移后能与另一个部分重合,那么我们把这个图形叫做平移重合图形下列图形中,平移重合图形是A平行四边形B等腰梯形C正六边形D圆【答案】【详解】如图,平行四边形中,取,的中点,连接四边形向右平移可以与四边形重合,平行四边形是平移重合图形,故选:4(2019上海)已知与外切,与、都内切,且,那么的半径长是A11B10C9D8【答案】【详解】如图,设,的半径为,由题意:,解得,故选:5(2018上海)如图,已知,点、在射线上(点在点、之间),半径长为2的与直线相切,半径长为3的与相交,那么的取值范围是ABCD【答案】【详解】设与直线相切时切

    3、点为,连接,当与相内切时,设切点为,如图1,;当与相外切时,设切点为,如图2,半径长为3的与相交,那么的取值范围是:,故选:6(2022静安区二模)如图,中,点是重心,将绕着点按顺时针方向旋转,使点落在延长线上的处,此时点落在点,点落在点联结、在旋转过程中,下列说法:;与相似;点所经过的路程长是其中正确的个数是A1B2C3D4【答案】【详解】旋转角相等,故符合题意;,将绕着点按顺时针方向旋转,使点落在延长线上的处,此时点落在点,点落在点,与都是等腰三角形,且顶角都等于旋转角,底角都等于,与相似,故符合题意;点所经过的路程长为以点为圆心,为半径的圆弧的长,故不符合题意;正确的个数有3个,故选:7

    4、(2022闵行区二模)如图,在中,点、分别为边、的中点,分别联结、,点是与的交点,下列结论中,正确的个数是的周长是周长的一半;与互相平分;如果,那么点到四边形四个顶点的距离相等;如果,那么点到四边形四条边的距离相等A1个B2个C3个D4个【答案】【详解】点、分别为边、的中点,的周长是周长的一半,故正确;点、分别为边、的中点,四边形是平行四边形,与互相平分,故正确;,四边形是平行四边形,四边形是矩形,点到四边形四个顶点的距离相等,故正确;,四边形是平行四边形,四边形是菱形,是菱形两组对角的平分线,点到四边形四条边的距离相等,故正确综上所述:正确的是,共4个,故选:8(2022黄浦区二模)下列命题

    5、中,真命题是A正六边形是轴对称图形但不是中心对称图形B正六边形的每一个外角都等于中心角C正六边形每条对角线都相等D正六边形的边心距等了边长的一半【答案】【详解】、正六边形是轴对称图形页是中心对称图形,故错误,是假命题,不符合题意;、正六边形的每一个外角都等于中心角,正确,是真命题,符合题意;、正六边形的每条对角线不一定相等,故错误,是假命题,不符合题意;、正六边形的边心距等于边长的倍,故错误,是假命题,不符合题意故选:9(2022长宁区二模)已知在中,那么以边长的倍为半径的圆与以为直径的圆的位置关系是A外切B相交C内切D内含【答案】【详解】取的中点,连接,在中,设,以边长的倍为半径的圆与以为直

    6、径的圆的位置关系是内含,故选:10(2022金山区二模)在直角坐标系中,点的坐标是,圆的半径为2,下列说法正确的是A圆与轴有一个公共点,与轴有两个公共点B圆与轴有两个公共点,与轴有一个公共点C圆与轴、轴都有两个公共点D圆与轴、轴都没有公共点【答案】【详解】,圆的半径为2,以为圆心,以2为半径的圆与轴的位置关系是相交,与轴的位置关系是相切,该圆与轴的交点有2个,与轴的交点有1个故选:11(2022宝山区二模)如图,在梯形中,圆是以为直径的圆如果以点为圆心作圆与直线相交,与圆没有公共点,那么圆的半径长可以是A9BC5D【答案】【详解】如图,连接交于点,过点作于点,则,在中,在中,由于与直线相交,因

    7、此的半径要大于4,又与没有公共点,因此与外离或内含,当与外离时,的半径要小于,此时的半径;当与内含时,的半径要大于,此时的半径;所以的半径为或,故选:12(2022徐汇区二模)下列命题是真命题的是A如果直角三角形的两条边长分别是3厘米和4厘米,那么它的斜边长度为5厘米B如果半径长分别为2厘米和3厘米的两个圆相切,那么它们的圆心距为5厘米C关于反比例函数,的值随自变量的值的增大而减少D顺次联结对角线相等的四边形的各边中点所形成的四边形是菱形【答案】【详解】、如果直角三角形的两条边长分别是3厘米和4厘米,那么它的斜边长度为5厘米或厘米,故本命题是假命题,不符合题意;、如果半径长分别为2厘米和3厘米

    8、的两个圆相切,那么它们的圆心距为5厘米或1厘米,故本命题是假命题,不符合题意;、关于反比例函数,在每个象限,的值随自变量的值的增大而减少,故本命题是假命题,不符合题意;、顺次联结对角线相等的四边形的各边中点所形成的四边形是菱形,本命题是真命题,符合题意;故选:13(2022崇明区二模)中,已知,以点、为圆心的圆分别记作圆、圆、圆,这三个圆的半径长都是2,那么下列结论中,正确的是A圆与圆相交B圆与圆外切C圆与圆外切D圆与圆外离【答案】【详解】根据题意作图如下:圆与圆外切,圆与圆外离,圆与圆相交,故选:14(2022杨浦区二模)如图,在四边形中,与相交于点,那么下列条件中不能判定四边形是矩形的是A

    9、BCD【答案】【详解】当,时,四边形是平行四边形,再依据,可得四边形是矩形;当,时,四边形不一定是平行四边形,也可能是等腰梯形;当,时,再根据,可得,进而得到,即可得到四边形是矩形;当,时,即可得出四边形是平行四边形,再依据,可得四边形是矩形;故选:15(2022松江区二模)如图,已知中,、分别是边、上的点,且如果经过点,且与外切,那么与直线的位置关系是A相离B相切C相交D不能确定【答案】【详解】设,则,如图,与交于点,则,在中,由可得,为半径,与直线相切故选:16(2022嘉定区二模)在中,以点为圆心,半径为8的圆记作圆,那么下列说法正确的是A点在圆内,点在圆外B点在圆上,点在圆外C点、都在

    10、圆内D点、都在圆外【答案】【详解】在中,即,点在的内部,点在的外部,故选:17(2022奉贤区二模)如果一个矩形经过一个多边形的各顶点,那么我们把这个矩形叫做这个多边形的外接矩形,如图,矩形是正六边形的外接矩形,如果正六边形的边长为2,那么矩形长边与短边的比是ABCD【答案】【详解】正六边形,在中,由对称性可知,矩形长边与短边的比是,故选:18(2022虹口区二模)如图,已知线段,按如下步骤作图:过点作射线;作的平分线;以点为圆心,长为半径作弧,交于点;过点作于点则是ABCD【答案】【详解】由作图可知,平分,故选:19(2022普陀区二模)如图,已知点、分别在的三边上,如果六边形是正六边形,下

    11、列结论中不正确的是ABCD【答案】【详解】六边形是正六边形,即是等边三角形,故选项结论正确,不符合题意;同理得出,即是等边三角形,即,故选项结论正确,不符合题意;,故选项结论不正确,符合题意;,故选项结论正确,不符合题意;故选:20(2022浦东新区二模)如图,在中,点在边上,的半径长为3,与相交,且点在外,那么的半径长可能是ABCD【答案】【详解】连接交于,如图1,在中,由勾股定理得:,则,要使与相交,且点在外,必须,即只有选项符合题意;故选:21(2022徐汇区模拟)已知两圆相交,当每个圆的圆心都在在另一个圆的圆外时,我们称此两圆的位置关系为“外相交”已知两圆“外相交”,且半径分别为2和5

    12、,则圆心距的取值可以是A4B5C6D7【答案】【详解】、相交,即,两圆“外相交”,且,两圆的圆心距的取值范围为两圆“外相交”时的圆心距的取值范围是故选22(2022黄浦区校级二模)如果一个正九边形的边长为,那么这个正九边形的半径是ABCD【答案】【详解】如图,设圆内接正九边形的一条边为,连接、,过点作,交于点,则,在中,故选:23(2022宝山区模拟)下列命题中正确的是A一组对边相等,另一组对边平行的四边形是等腰梯形B对角线互相垂直且相等的四边形是矩形C对角线互相平分且相等的四边形是正方形D对角线互相垂直平分的四边形是菱形【答案】【详解】一组对边相等,另一组对边平行的四边形是等腰梯形或平行四边

    13、形,原说法错误,故本选项不合题意;对角线互相垂直且相等的四边形是正方形,原说法错误,故本选项不合题意;对角线互相平分且相等的四边形是矩形,原说法错误,故本选项不合题意;对角线互相垂直平分的四边形是菱形,说法正确,故本选项符合题意故选:24(2022徐汇区校级模拟)如图,是的弦,是弦上一点,且,连接并延长交于,若,则圆心到弦的距离为ABCD【答案】【详解】延长交圆于设,则厘米,厘米,解得:,在直角中,故选:25(2022普陀区模拟)下列判断错误的是A对角线互相垂直且相等的平行四边形是正方形B对角线互相垂直平分的四边形是菱形C对角线相等的四边形是矩形D对角线互相平分的四边形是平行四边形【答案】【详

    14、解】、对角线互相垂直且相等的平行四边形是正方形,故本选项错误;、对角线互相垂直平分的四边形是菱形,故本选项错误;、对角线相等的四边形不一定是矩形,例如:等腰梯形的对角线相等,故本选项正确;、对角线互相平分的四边形是平行四边形,故本选项错误;故选:26(2022宝山区模拟)如图,已知抛物线经过点,与轴交于,且顶点在第一象限,那么下列结论:;是方程的解;,其中正确的结论为ABCD【答案】【详解】把,0代入,得,故正确;抛物线经过点,当时,当时,方程成立,是方程的解,故正确;由于函数图象开口向下知,抛物线与轴交于正半轴,抛物线的顶点在第一象限,故错误;抛物线与轴交于,故正确;故选:27(2022徐汇

    15、区模拟)对于命题:1、如果一个圆上所有的点都在另一个圆的内部,那么这两个圆内含;2、如果一个圆上所有的点都在另一个圆的外部,那么这两个圆外离下列判断正确的是A1、2都是真命题B1、是假命题,2、是真命题C1、是真命题,2、是假命题D1、2都是假命题【答案】【详解】如果一个圆上所有的点都在另一个圆的内部,那么这两个圆内含,是真命题;如果一个圆上所有的点都在另一个圆的外部,那么这两个圆外离,是假命题;故选:28(2022松江区校级模拟)如图,已知中,如果以点为圆心的圆与斜边有公共点,那么的半径的取值范围是ABCD【答案】【详解】过点作于点,如果以点为圆心,为半径的圆与斜边只有一个公共点,当直线与圆

    16、相切时,圆与斜边只有一个公共点,圆与斜边只有一个公共点,当直线与圆如图所示也可以有交点,故选:29(2022浦东新区校级模拟)下列命题错误的是A一组对边相等且一条对角线平分另一条对角线的四边形不一定是平行四边形B一组对角相等且这一组对角的顶点所连接的对角线平分另一条对角线的四边形不一定是平行四边形C一组对角相等且这一组对角的顶点连接的对角线被另一条对角线平分的四边形不一定是平行四边形D一组对边相等一组对角相等的四边形不一定是平行四边形【答案】【详解】一组对边相等且一条对角线平分另一条对角线的四边形不一定是平行四边形,故正确,不符合题意;一组对角相等且这一组对角的顶点所连接的对角线平分另一条对角

    17、线的四边形一定是平行四边形,能证明另一组对角也相等,故错误,符合题意,证明如下:已知:,对角线平分对角线,求证:四边形是平行四边形证明:过点作交于,连接;如图所示:,在和中,在和中,、共点,又,四边形是平行四边形;一组对角相等且这一组对角的顶点连接的对角线被另一条对角线平分的四边形不一定是平行四边形,故正确,不符合题意;一组对边相等一组对角相等的四边形不一定是平行四边形,故正确,不符合题意;故选:30(2022嘉定区校级模拟)矩形中,点在边上,且,如果圆是以点为圆心,为半径的圆,那么下列判断正确的是A点,均在圆外B点在圆外,点在圆内C点在圆内,点在圆外D点,均在圆内【答案】【详解】如图,四边形

    18、为矩形,在中,在中,点在圆内,点在圆外故选:31(2022金山区校级模拟)已知的半径长为3,点在线段上,且,如果与有公共点,那么的半径的取值范围是ABCD【答案】【详解】如图,当内切于时,的半径为,当内切于时,的半径为,如果与有公共点,那么的半径的取值范围是,故选:32(2022宝山区模拟)如图,已知与都是等边三角形,点在边上(不与点、重合),与相交于点,那么与相似的三角形是ABCD【答案】【详解】与都是等边三角形,与相似的三角形是,故选:33(2022青浦区模拟)在四边形中,(如图)点是边上一点,如果以为圆心,为半径的圆与边有交点,那么的取值范围是ABCD【答案】【详解】如图1,过点作于,则

    19、,在中,当与相切时,此时与线段有一个公共点,此时半径最小,设,则,在中,由得,解得;如图2,当以为半径的过点时,半径最大,过点作于,设,则,在中,在中,由勾股定理得,即,解得,即的最大半径为,所以当以为圆心,为半径的圆与边有交点,那么的取值范围为,故选:34(2022松江区校级模拟)已知,以点为圆心,以为半径画圆,以点为圆心,半径为,画圆已知与外离,则的取值范围为ABCD【答案】【详解】设半径为,则,与外离,即,故选:35(2022徐汇区模拟)下列命题是真命题的是A如果直角三角形的两条边长分别是3厘米和4厘米,那么它的斜边长度为5米B如果半径长分别为2厘米和3厘米的两个圆相切,那么它们的圆心距为5厘米C关于反比例函数,的值随自变量的值的增大而减少D顺次联结对角线相等的四边形的各边中点所形成的四边形是菱形【答案】【详解】、如果直角三角形的两条边长分别是3厘米和4厘米,那么它的斜边长度为5厘米或4厘米,故本命题是假命题,不符合题意;、如果半径长分别为2厘米和3厘米的两个圆相切,那么它们的圆心距为5厘米或1厘米,故本命题是假命题,不符合题意;、关于反比例函数,在每个象限内,的值随自变量的值的增大而减少,故本命题是假命题,不符合题意;、顺次联结对角线相等的四边形的各边中点所形成的四边形是菱形,本命题是真命题,符合题意;故选:

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题01 【五年中考 一年模拟】选择压轴题-备战2023年上海中考数学真题模拟题分类汇编(解析版).docx
    链接地址:https://www.ketangku.com/wenku/file-827153.html
    相关资源 更多
  • 化工安全:另一种“德国制造”.docx化工安全:另一种“德国制造”.docx
  • 化工安全设计的基本概念.docx化工安全设计的基本概念.docx
  • 化工园区污水处理厂工艺改造设计与运行研究.docx化工园区污水处理厂工艺改造设计与运行研究.docx
  • 化工园区VOCs防治现状与对策研究.docx化工园区VOCs防治现状与对策研究.docx
  • 化工厂装置火灾应急响应演练方案.docx化工厂装置火灾应急响应演练方案.docx
  • 化工危险废物焚烧的烟气净化工艺分析.docx化工危险废物焚烧的烟气净化工艺分析.docx
  • 化工企业静电危害与应对措施.docx化工企业静电危害与应对措施.docx
  • 化工企业防汛 、防台风应急救援预案.docx化工企业防汛 、防台风应急救援预案.docx
  • 化工企业防建、构筑物倒塌应急救援预案.docx化工企业防建、构筑物倒塌应急救援预案.docx
  • 化工企业职业卫生管理问题与思考.docx化工企业职业卫生管理问题与思考.docx
  • 化工企业职业卫生管理制度.docx化工企业职业卫生管理制度.docx
  • 化工企业班组安全建设基本标准.docx化工企业班组安全建设基本标准.docx
  • 化工企业检修安全控制.docx化工企业检修安全控制.docx
  • 化工企业动火作业安全管理制度.docx化工企业动火作业安全管理制度.docx
  • 化工企业冬季安全措施.docx化工企业冬季安全措施.docx
  • 化工企业临时用电安全管理制度.docx化工企业临时用电安全管理制度.docx
  • 化学:1.3《化学能转化为电能——电池》ppt课件(鲁科版选修4)(共25张PPT).docx化学:1.3《化学能转化为电能——电池》ppt课件(鲁科版选修4)(共25张PPT).docx
  • 化学:鲁教版九年级上 22水的分解与合成(学案2份).docx化学:鲁教版九年级上 22水的分解与合成(学案2份).docx
  • 化学:第一章《认识有机化合物 归纳与整理》课件PPT(新人教版选修5)(共27张PPT).docx化学:第一章《认识有机化合物 归纳与整理》课件PPT(新人教版选修5)(共27张PPT).docx
  • 化学:湘教版九年级下 72几种常见的酸和碱(教案 课件 同步练习).docx化学:湘教版九年级下 72几种常见的酸和碱(教案 课件 同步练习).docx
  • 化学:沪科版 54《化学肥料中的主角》(教案 学案).docx化学:沪科版 54《化学肥料中的主角》(教案 学案).docx
  • 化学:沪教版九年级上册第五章第一节 金属与金属矿物(课件).docx化学:沪教版九年级上册第五章第一节 金属与金属矿物(课件).docx
  • 化学:旧人教版必修一 54化学键(教案 课件).docx化学:旧人教版必修一 54化学键(教案 课件).docx
  • 化学:1.1《化学反应与能量的变化》第一课时 焓变反应热(备课组)37ppt(人教版选修4).docx化学:1.1《化学反应与能量的变化》第一课时 焓变反应热(备课组)37ppt(人教版选修4).docx
  • 化学:1.1《化学反应与能量的变化》第一课时 焓变反应热(备课组)37ppt(人教版选修4).docx化学:1.1《化学反应与能量的变化》第一课时 焓变反应热(备课组)37ppt(人教版选修4).docx
  • 化学(第七期)(word版).docx化学(第七期)(word版).docx
  • 化学(科粤版)九年级上册同步练习:5.2 组成燃料的主要元素——碳.docx化学(科粤版)九年级上册同步练习:5.2 组成燃料的主要元素——碳.docx
  • 化学(含答案解析版).docx化学(含答案解析版).docx
  • 化学(九省联考真题完全解读河南卷)-2024年1月“九省联考”真题完全解读与考后提升.docx化学(九省联考真题完全解读河南卷)-2024年1月“九省联考”真题完全解读与考后提升.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1