专题06 立体几何(解答题)(文科专用)(教师版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题06 立体几何解答题文科专用教师版 专题 06 立体几何 解答 文科 专用 教师版
- 资源描述:
-
1、专题06 立体几何(解答题)(文科专用)1【2022年全国甲卷】小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD是边长为8(单位:cm)的正方形,EAB,FBC,GCD,HDA均为正三角形,且它们所在的平面都与平面ABCD垂直(1)证明:EF/平面ABCD;(2)求该包装盒的容积(不计包装盒材料的厚度)【答案】(1)证明见解析;(2)64033【解析】【分析】(1)分别取AB,BC的中点M,N,连接MN,由平面知识可知EMAB,FNBC,EM=FN,依题从而可证EM平面ABCD,FN平面ABCD,根据线面垂直的性质定理可知EM/FN,即可知四边形EMNF为平行四边
2、形,于是EF/MN,最后根据线面平行的判定定理即可证出;(2)再分别取AD,DC中点K,L,由(1)知,该几何体的体积等于长方体KMNL-EFGH的体积加上四棱锥B-MNFE体积的4倍,即可解出(1)如图所示:,分别取AB,BC的中点M,N,连接MN,因为EAB,FBC为全等的正三角形,所以EMAB,FNBC,EM=FN,又平面EAB平面ABCD,平面EAB平面ABCD=AB,EM平面EAB,所以EM平面ABCD,同理可得FN平面ABCD,根据线面垂直的性质定理可知EM/FN,而EM=FN,所以四边形EMNF为平行四边形,所以EF/MN,又EF平面ABCD,MN平面ABCD,所以EF/平面AB
3、CD(2)如图所示:,分别取AD,DC中点K,L,由(1)知,EF/MN且EF=MN,同理有,HE/KM,HE=KM,HG/KL,HG=KL,GF/LN,GF=LN,由平面知识可知,BDMN,MNMK,KM=MN=NL=LK,所以该几何体的体积等于长方体KMNL-EFGH的体积加上四棱锥B-MNFE体积的4倍因为MN=NL=LK=KM=42,EM=8sin60=43,点B到平面MNFE的距离即为点B到直线MN的距离d,d=22,所以该几何体的体积V=42243+413424322=1283+25633=640332【2022年全国乙卷】如图,四面体ABCD中,ADCD,AD=CD,ADB=BD
4、C,E为AC的中点(1)证明:平面BED平面ACD;(2)设AB=BD=2,ACB=60,点F在BD上,当AFC的面积最小时,求三棱锥F-ABC的体积【答案】(1)证明详见解析(2)34【解析】【分析】(1)通过证明AC平面BED来证得平面BED平面ACD.(2)首先判断出三角形AFC的面积最小时F点的位置,然后求得F到平面ABC的距离,从而求得三棱锥F-ABC的体积.(1)由于AD=CD,E是AC的中点,所以ACDE.由于AD=CDBD=BDADB=CDB,所以ADBCDB,所以AB=CB,故ACBD,由于DEBD=D,DE,BD平面BED,所以AC平面BED,由于AC平面ACD,所以平面B
5、ED平面ACD.(2)依题意AB=BD=BC=2,ACB=60,三角形ABC是等边三角形,所以AC=2,AE=CE=1,BE=3,由于AD=CD,ADCD,所以三角形ACD是等腰直角三角形,所以DE=1.DE2+BE2=BD2,所以DEBE,由于ACBE=E,AC,BE平面ABC,所以DE平面ABC.由于ADBCDB,所以FBA=FBC,由于BF=BFFBA=FBCAB=CB,所以FBAFBC,所以AF=CF,所以EFAC,由于SAFC=12ACEF,所以当EF最短时,三角形AFC的面积最小值.过E作EFBD,垂足为F,在RtBED中,12BEDE=12BDEF,解得EF=32,所以DF=12
6、-322=12,BF=2-DF=32,所以BFBD=34.过F作FHBE,垂足为H,则FH/DE,所以FH平面ABC,且FHDE=BFBD=34,所以FH=34,所以VF-ABC=13SABCFH=13122334=34.3【2021年甲卷文科】已知直三棱柱中,侧面为正方形,E,F分别为和的中点,.(1)求三棱锥的体积;(2)已知D为棱上的点,证明:.【答案】(1);(2)证明见解析.【解析】【分析】(1)先证明为等腰直角三角形,然后利用体积公式可得三棱锥的体积;(2)将所给的几何体进行补形,从而把线线垂直的问题转化为证明线面垂直,然后再由线面垂直可得题中的结论.【详解】(1)由于,所以,又A
7、BBB1,故平面,则,为等腰直角三角形,.(2)由(1)的结论可将几何体补形为一个棱长为2的正方体,如图所示,取棱的中点,连结,正方形中,为中点,则,又,故平面,而平面,从而.【点睛】求三棱锥的体积时要注意三棱锥的每个面都可以作为底面,例如三棱锥的三条侧棱两两垂直,我们就选择其中的一个侧面作为底面,另一条侧棱作为高来求体积对于空间中垂直关系(线线、线面、面面)的证明经常进行等价转化.4【2021年乙卷文科】如图,四棱锥的底面是矩形,底面,M为的中点,且(1)证明:平面平面;(2)若,求四棱锥的体积【答案】(1)证明见解析;(2)【解析】【分析】(1)由底面可得,又,由线面垂直的判定定理可得平面
8、,再根据面面垂直的判定定理即可证出平面平面;(2)由(1)可知,由平面知识可知,由相似比可求出,再根据四棱锥的体积公式即可求出【详解】(1)因为底面,平面,所以,又,所以平面,而平面,所以平面平面(2)方法一:相似三角形法 由(1)可知于是,故因为,所以,即故四棱锥的体积方法二:平面直角坐标系垂直垂直法由(2)知,所以建立如图所示的平面直角坐标系,设因为,所以,从而所以,即下同方法一. 方法三【最优解】:空间直角坐标系法建立如图所示的空间直角坐标系,设,所以,所以,所以所以,即下同方法一. 方法四:空间向量法由,得所以即又底面,在平面内,因此,所以所以,由于四边形是矩形,根据数量积的几何意义,
9、得,即所以,即下同方法一.【整体点评】(2)方法一利用相似三角形求出求出矩形的另一个边长,从而求得该四棱锥的体积;方法二构建平面直角坐标系,利用直线垂直的条件得到矩形的另一个边长,从而求得该四棱锥的体积;方法三直接利用空间直角坐标系和空间向量的垂直的坐标运算求得矩形的另一个边长,为最常用的通性通法,为最优解;方法四利用空间向量转化求得矩形的另一边长.5【2020年新课标1卷文科】如图,为圆锥的顶点,是圆锥底面的圆心,是底面的内接正三角形,为上一点,APC=90(1)证明:平面PAB平面PAC;(2)设DO=,圆锥的侧面积为,求三棱锥PABC的体积.【答案】(1)证明见解析;(2).【解析】【分
10、析】(1)根据已知可得,进而有,可得,即,从而证得平面,即可证得结论;(2)将已知条件转化为母线和底面半径的关系,进而求出底面半径,由正弦定理,求出正三角形边长,在等腰直角三角形中求出,在中,求出,即可求出结论.【详解】(1)连接,为圆锥顶点,为底面圆心,平面,在上,是圆内接正三角形,即,平面平面,平面平面;(2)设圆锥的母线为,底面半径为,圆锥的侧面积为,解得,在等腰直角三角形中,在中,三棱锥的体积为.【点睛】本题考查空间线、面位置关系,证明平面与平面垂直,求锥体的体积,注意空间垂直间的相互转化,考查逻辑推理、直观想象、数学计算能力,属于中档题.6【2020年新课标2卷文科】如图,已知三棱柱
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2023-2024学年北京市东城区高一上学期期末考试数学试卷答案.pdf
