专题09与圆有关的定值问题(原卷版)-【重难点突破】2021-2022学年高二数学上册常考题专练(人教A版2019选择性必修第一册).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 重难点突破
- 资源描述:
-
1、专题09 与圆有关的定值问题1已知圆的圆心在直线上,并且经过点,与直线相切(1)试求圆的方程;(2)若圆与直线相交于,两点求证:为定值2动圆与轴交于,两点,且,是方程的两根(1)若线段是动圆的直径,求动圆的方程;(2)证明:当动圆过点时,动圆在轴上截得弦长为定值3如图,在直角坐标系中,圆与轴负半轴交于点,过点的直线、分别与圆交于、两点(1)若,求的面积;(2)若直线过点,证明:为定值,并求此定值4已知过点 且斜率为的直线与圆交于,两点(1)求斜率的取值范围;(2)以点为圆心,为半径的圆与圆总存在公共点,求的取值范围;(3)为坐标原点,求证:直线与斜率之和为定值5在平面直角坐标系中,已知圆心在轴
2、上的圆经过点,且被轴截得的弦长为,经过坐标原点的直线与圆交于,两点(1)求当满足时对应的直线的方程;(2)若点,直线与圆的另一个交点为,直线与圆的另一个交点为,分别记直线、直线的斜率为、,求证:为定值6已知圆心在第一象限,半径为的圆与轴相切,且与轴正半轴交于,两点在左侧),为坐标原点)(1)求圆的标准方程;(2)过点任作一条直线与圆相交于,两点证明:为定值;求的最小值7已知圆经过坐标原点,圆心在轴正半轴上,且与直线相切(1)求圆的标准方程(2)直线与圆交于,两点()求的取值范围;()证明:直线与直线的斜率之和为定值8在平面直角坐标系中,设圆的圆心为,(1)若,是圆的两条切线,是切点,为圆心,求
3、四边形的面积;(2)若过点且斜率为的直线与圆相交于不同的两点,设直线、的斜率分别为,问是否为定值?若是,求出这个定值,若不是,请说明理由9已知圆,直线过定点(1)若与圆相切,求的方程;(2)若与圆相交于、两点,线段中点为,又与交点为,求证:为定值10已知为坐标原点,圆的方程为:,直线过点(1)若直线与圆有且只有一个公共点,求直线的方程;(2)若直线与圆交于不同的两点,试问:直线与的斜率之和是否为定值,若是,求出该定值:若不是,说明理由11若圆与圆相外切(1)求的值;(2)若圆与轴的正半轴交于点,与轴的正半轴交于点,为第三象限内一点且在圆上,直线与轴交于点,直线与轴交于点,求证:四边形的面积为定
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-830297.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
