分享
分享赚钱 收藏 举报 版权申诉 / 13

类型专题11 最值模型-阿氏圆问题(原卷版).docx

  • 上传人:a****
  • 文档编号:831460
  • 上传时间:2025-12-16
  • 格式:DOCX
  • 页数:13
  • 大小:1.10MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题11 最值模型-阿氏圆问题原卷版 专题 11 模型 阿氏圆 问题 原卷版
    资源描述:

    1、专题11 最值模型-阿氏圆问题最值问题在中考数学常以压轴题的形式考查,“阿氏圆”又称“阿波罗尼斯圆”,主要考查转化与化归等的数学思想。在各类考试中都以高档题为主,中考说明中曾多处涉及。本专题就最值模型中的阿氏圆问题进行梳理及对应试题分析,方便掌握。【模型背景】已知平面上两点A、B,则所有满足 PA=kPB(k1)的点P的轨迹是一个圆,这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”。【模型解读】如图 1 所示,O的半径为 r,点 A、B都在O 外,P为O上一动点,已知r=kOB, 连接PA、PB,则当“PA+kPB”的值最小时,P点的位置如何确定?如图2,在线段OB上截取OC使OC=k

    2、r,则可说明BPO与PCO相似,即kPB=PC。故本题求“PA+kPB”的最小值可以转化为 “PA+PC”的最小值,其中与A与C为定点,P为动点,故当A、P、C三点共线时,“PA+PC”值最小。如图3所示:注意区分胡不归模型和阿氏圆模型:在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的“阿氏圆”问题【最值原理】两点之间线段最短及垂线段最短解题。例1(2022安徽九年级期末)如图,在RtABC中,ACB90,CB7,AC9,以C为圆心、3为半径作C,P为C上一动点,连接AP、BP,则APBP的最小值为()A7B5CD例2(2

    3、020广西中考真题)如图,在Rt中,ABAC4,点E,F分别是AB,AC的中点,点P是扇形AEF的上任意一点,连接BP,CP,则BP+CP的最小值是_例3(2022四川成都模拟预测)如图,已知正方ABCD的边长为6,圆B的半径为3,点P是圆B上的一个动点,则的最大值为_例4(2022浙江舟山九年级期末)如图,矩形中,以B为圆心,以为半径画圆交边于点E,点P是弧上的一个动点,连结,则的最小值为()ABCD例5(2022广东广州市第二中学九年级阶段练习)如图,在平面直角坐标系中,A(2,0),B(0,2),C(4,0),D(5,3),点P是第一象限内一动点,且,则4PD+2PC的最小值为_例6(2

    4、021浙江金华一模)问题提出:如图1,在等边ABC中,AB9,C半径为3,P为圆上一动点,连结AP,BP,求AP+BP的最小值(1)尝试解决:为了解决这个问题,下面给出一种解题思路,通过构造一对相似三角形,将BP转化为某一条线段长,具体方法如下:(请把下面的过程填写完整)如图2,连结CP,在CB上取点D,使CD1,则有又PCD PDBPAP+BPAP+PD当A,P,D三点共线时,AP+PD取到最小值请你完成余下的思考,并直接写出答案:AP+BP的最小值为 (2)自主探索:如图3,矩形ABCD中,BC6,AB8,P为矩形内部一点,且PB4,则AP+PC的最小值为 (请在图3中添加相应的辅助线)(

    5、3)拓展延伸:如图4,在扇形COD中,O为圆心,COD120,OC4OA2,OB3,点P是上一点,求2PA+PB的最小值,画出示意图并写出求解过程例7(2022广东二模)(1)初步研究:如图1,在PAB中,已知PA=2,AB=4,Q为AB上一点且AQ=1,证明:PB=2PQ;(2)结论运用:如图2,已知正方形ABCD的边长为4,A的半径为2,点P是A上的一个动点,求2PC+PB的最小值;(3)拓展推广:如图3,已知菱形ABCD的边长为4,A=60,A的半径为2,点P是A上的一个动点,求2PCPB的最大值例8(2022江苏苏州九年级阶段练习)阅读以下材料,并按要求完成相应的任务.已知平面上两点,

    6、则所有符合且的点会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆.阿氏圆基本解法:构造三角形相似.【问题】如图1,在平面直角坐标中,在轴,轴上分别有点,点是平面内一动点,且,设,求的最小值.阿氏圆的关键解题步骤:第一步:如图1,在上取点,使得;第二步:证明;第三步:连接,此时即为所求的最小值.下面是该题的解答过程(部分):解:在上取点,使得,又.任务:将以上解答过程补充完整.如图2,在中,为内一动点,满足,利用中的结论,请直接写出的最小值.课后专项训练1(2022福建南平九年级期中)如图,在RtABC中,ACB90,CB7,AC9,以C为圆心、3为半径作C,P为C上一动点,连接

    7、AP、BP,则AP+BP的最小值为()A3.B4C3D52(2022江苏无锡市九年级期中)如图,O与y轴、x轴的正半轴分别相交于点M、点N,O半径为3,点A(0,1),点B(2,0),点P在弧MN上移动,连接PA,PB,则3PA+PB的最小值为 _3(2022陕西三模)如图,在四边形中, ,对角线,设,则的最小值为 _4(2022湖北武汉模拟预测)【新知探究】新定义:平面内两定点 A, B ,所有满足 = k ( k 为定值)的 P 点形成的图形是圆,我们把这种圆称之为“阿氏圆”,【问题解决】如图,在ABC 中,CB = 4 , AB= 2AC ,则ABC 面积的最大值为_5(2022浙江九年

    8、级期中)如图,在RtABC中,ACB90,AC6,BC8,D、E分别是边BC、AC上的两个动点,且DE4,P是DE的中点,连接PA,PB,则PA+PB的最小值为6(2022江苏苏州九年级阶段练习)如图,正方形ABCD的边长为4,点E为边AD上一个动点,点F在边CD上,且线段EF4,点G为线段EF的中点,连接BG、CG,则BG+CG的最小值为 _7(2022山西九年级专题练习)如图,在中,以点B为圆心作圆B与相切,点P为圆B上任一动点,则的最小值是_ 8(2022湖北九年级专题练习)如图,已知正方形ABCD的边长为4,B的半径为2,点P是B上的一个动点,则PDPC的最大值为_9(2022北京九年

    9、级专题练习)如图,边长为4的正方形,内切圆记为O,P是O上一动点,则PAPB的最小值为_10(2022山东九年级专题练习)如图,在中,圆C半径为2,P为圆上一动点,连接最小值_最小值_11(2022重庆九年级专题练习)(1)如图1,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD的最小值为_,PD的最大值为_(2)如图2,已知菱形ABCD的边长为4,B60,圆B的半径为2,点P是圆B上的一个动点,那么PD的最小值为_,PD的最大值为_12(2022江苏淮安九年级期中)问题提出:如图1,在等边ABC中,AB=12,C半径为6,P为圆上一动点,连结AP,BP,求AP+

    10、BP的最小值(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB上取点D,使CD=3,则有=,又PCD=BCP,PCDBCP,=,PD=BP,AP+BP=AP+PD请你完成余下的思考,并直接写出答案:AP+BP的最小值为(2)自主探索:如图1,矩形ABCD中,BC=7,AB=9,P为矩形内部一点,且PB=3,AP+PC的最小值为(3)拓展延伸:如图2,扇形COD中,O为圆心,COD=120,OC=4,OA=2,OB=3,点P是上一点,求2PA+PB的最小值,画出示意图并写出求解过程13(2022湖北九年级专题练习)(1)如图1,已知正方形的边长为4,圆B的半径为2,

    11、点P是圆B上的一个动点,求的最小值,的最小值,的最大值(2)如图2,已知正方形的边长为9,圆B的半径为6,点P是圆B上的一个动点,求的最小值,的最大值,的最小值(3)如图3,已知菱形的边长为4,圆B的半径为2,点P是圆B上的一个动点,求的最小值和的最大值的最小值 14(2022山东聊城二模)如图,抛物线经过点,直线AC的解析式为,且与y轴相交于点C,若点E是直线AB上的一个动点,过点E作轴交AC于点F(1)求抛物线的解析式;(2)点H是y轴上一动点,连结EH,HF,当点E运动到什么位置时,四边形EAFH是矩形?求出此时点E,H的坐标;(3)在(2)的前提下,以点E为圆心,EH长为半径作圆,点M

    12、为上以动点,求的最小值15(2022江苏泰州一模)如图,已知中,是上的一点,点是线段上的一个动点,沿折叠,点与重合,连接(1)求证:;(2)若点是上的一点,且,若与的面积比是,请用无刻度的直尺和圆规在图(2)中作出折叠后的(保留作图痕迹,不写作法);求的最小值16(2022广东九年级专题练习)如图1,已知正方形ABCD,AB4,以顶点B为直角顶点的等腰RtBEF绕点B旋转,BEBF,连接AE,CF(1)求证:ABECBF(2)如图2,连接DE,当DEBE时,求SBCF的值(SBCF表示BCF的面积)(3)如图3,当RtBEF旋转到正方形ABCD外部,且线段AE与线段CF存在交点G时,若M是CD的中点,P是线段DG上的一个动点,当满足MP+PG的值最小时,求MP的值17(2022河北九年级专题练习)如图1,在RTABC中,ACB90,CB4,CA6,圆C的半径为2,点P为圆上一动点,连接AP,BP,求:,的最小值

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题11 最值模型-阿氏圆问题(原卷版).docx
    链接地址:https://www.ketangku.com/wenku/file-831460.html
    相关资源 更多
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题及参考答案【B卷】.docx冀教版六年级上册数学第五单元 百分数的应用 练习题及参考答案【B卷】.docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(黄金题型).docx冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(黄金题型).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(轻巧夺冠).docx冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(轻巧夺冠).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(能力提升).docx冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(能力提升).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(考试直接用).docx冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(考试直接用).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(突破训练).docx冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(突破训练).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(满分必刷).docx冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(满分必刷).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(模拟题).docx冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(模拟题).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(完整版).docx冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(完整版).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(培优).docx冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(培优).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(名师推荐).docx冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(名师推荐).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(全国通用).docx冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(全国通用).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(B卷).docx冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(B卷).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题【最新】.docx冀教版六年级上册数学第五单元 百分数的应用 练习题【最新】.docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题【实验班】.docx冀教版六年级上册数学第五单元 百分数的应用 练习题【实验班】.docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题【学生专用】.docx冀教版六年级上册数学第五单元 百分数的应用 练习题【学生专用】.docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题【中心小学】.docx冀教版六年级上册数学第五单元 百分数的应用 练习题【中心小学】.docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题【word】.docx冀教版六年级上册数学第五单元 百分数的应用 练习题【word】.docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题word.docx冀教版六年级上册数学第五单元 百分数的应用 练习题word.docx
  • 冀教版六年级上册数学第五单元 百分数的应用 测试卷(考点精练).docx冀教版六年级上册数学第五单元 百分数的应用 测试卷(考点精练).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 测试卷(考点提分).docx冀教版六年级上册数学第五单元 百分数的应用 测试卷(考点提分).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 测试卷(综合卷).docx冀教版六年级上册数学第五单元 百分数的应用 测试卷(综合卷).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 测试卷(精练).docx冀教版六年级上册数学第五单元 百分数的应用 测试卷(精练).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 测试卷(研优卷).docx冀教版六年级上册数学第五单元 百分数的应用 测试卷(研优卷).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 测试卷(真题汇编).docx冀教版六年级上册数学第五单元 百分数的应用 测试卷(真题汇编).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 测试卷(基础题).docx冀教版六年级上册数学第五单元 百分数的应用 测试卷(基础题).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 测试卷附答案(能力提升).docx冀教版六年级上册数学第五单元 百分数的应用 测试卷附答案(能力提升).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 测试卷附答案(考试直接用).docx冀教版六年级上册数学第五单元 百分数的应用 测试卷附答案(考试直接用).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 测试卷附答案(精练).docx冀教版六年级上册数学第五单元 百分数的应用 测试卷附答案(精练).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1