专题13.5 三角形中的八大经典模型【八大题型】(举一反三)(沪科版)(原卷版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八大题型 专题13.5 三角形中的八大经典模型【八大题型】举一反三沪科版原卷版 专题 13.5 三角形 中的 八大 经典 模型 题型 举一反三 沪科版 原卷版
- 资源描述:
-
1、专题13.5 三角形中的八大经典模型【八大题型】【沪科版】【题型1 A字模型】1【题型2 8字模型】3【题型3 双垂直模型】4【题型4 飞镖模型】6【题型5 风筝模型】8【题型6 两内角角平分线模型】9【题型7 两外角角平分线模型】11【题型8 内外角角平分线模型】14【知识点1 A字模型】【条件】ADE与ABC.【结论】AED+ADE=B+C.【证明】根据三角形内角和可得,AED+ADE=180-A,B+C=180-A,AED+ADE=B+C,得证.【题型1 A字模型】【例1】(2023春湖北荆门八年级校联考期末)如图,在ABC中,C70,沿图中虚线截去C,则12()A360B250C180
2、D140【变式1-1】(2023春八年级单元测试)如图所示,DAE的两边上各有一点B,C,连接BC,求证DBC+ECB=180+A【变式1-2】(2023春常州期中)如图,ABC中,B68,A比C大28,点D、E分别在AB、BC上连接DE,DEB42(1)求A的度数;(2)判断DE与AC之间的位置关系,并说明理由【变式1-3】(2023春江苏泰州八年级校联考期中)如图,已知A=40,则1+2+3+4的度数为 【知识点2 8字模型】【条件】AD、BC相交于点O.【结论】A+B=C+D.(上面两角之和等于下面两角之和)【证明】在ABO中,由内角和定理:A+B+BOA=180,在CDO中,C+D+C
3、OD=180,A+B+BOA=180=C+D+COD,由对顶角相等:BOA=CODA+B=C+D,得证.【题型2 8字模型】【例2】(2015-2016学年北京市怀柔区八年级上学期期末数学试卷(带解析)如图是由线段AB,CD,DF,BF,CA组成的平面图形,D=28,则A+B+C+F的度数为()A62B152C208D236【变式2-1】(2013-2014学年初中数学苏教版八年级上册第一章练习卷(带解析)如图,ABCADE,且CAD=10,B=D=25,EAB=120,求DFB和DGB的度数【变式2-2】(2023河北统考中考真题)下图是可调躺椅示意图(数据如图),AE与BD的交点为C,且A
4、,B,E保持不变为了舒适,需调整D的大小,使EFD=110,则图中D应 (填“增加”或“减少”) 度【变式2-3】(2023春八年级期末)(1)如图,求A+B+C+D+E+F的度数;(2)如图,求A+B+C+D+E+F+G+H的度数;(3)如图,求A+B+C+D+E+F+G的度数【知识点3 双垂直模型】【条件】B=D=ACE=90.【结论】BAC=DCE,ACB=CED.【证明】B=D=ACE=90;BAC+ACB=90;又ECD+ACB=90;BAC=DCE同理,ACB+DCE=90,且CED+DCE=90;ACB=CED,得证.【题型3 双垂直模型】【例3】(2023春广东珠海八年级校联考
5、期末)如图1,线段ABBC于点B,CDBC于点C,点E在线段BC上,且AEDE(1)求证:EAB=CED;(2)如图2,AF、DF分别平分BAE和CDE,EH平分DEC交CD于点H,EH的反向延长线交AF于点G求证EGAF;求F的度数【提示:三角形内角和等于180度】【变式3-1】(2023春江苏泰州八年级校考期中)如图,在ABC中,ACB=90,AE是角平分线,CD是高,AE、CD相交于点F, 求证:CFE=CEF请在以下的解题过程中的括号里填推理的理由证明:AE平分CAB(已知)CAE=FAB(_)ACE=90(已知)CAE+CEF=90(_)CD是ABC的高(已知)FDA=90(三角形高
6、的定义)FAB+AFD=90(直角三角形的两锐角互余)CEF=AFD(_)CFE=AFD(_)CFE=CEF(_)【变式3-2】(2023春山东青岛八年级山东省青岛第五十九中学校考期中)如图,在等腰RtABC中,ACB=90,D为BC的中点,DEAB,垂足为E,过点B作BFAC交DE的延长线于点F,连接CF交AD于点G(1)判断DBF的形状,并说明理由(2)求证:ADCF【变式3-3】(2023春山东济南八年级济南育英中学校联考期中)如图,ABC中,B=90,点D在射线BC上运动,DEAD交射线AC于点E(1)如图1,若BAC=60,当AD平分BAC时,求EDC的度数;(2)如图2,当点D在线
7、段BC上时,判断EDC与BAD的数量关系并说明理由;作EFBC于F,BAD、DEF的角平分线相交于点G,随着点D的运动,G的度数会变化吗?如果不变,求出G的度数;如果变化,说明理由;(3)如图3,当点D在BC的延长线上时,作EFBD于F,BAD的角平分线和DEF的角平分线的反向延长线相交于点G,G的度数会变化吗?如果不变,求出G的度数;如果变化,说明理由【知识点4 飞镖模型】【条件】四边形ABDC如上左图所示.【结论】D=A+B+C.(凹四边形凹外角等于三个内角和)【证明】如上右图,连接AD并延长到E,则:BDC=BDE+CDE=(B+1)+(2+C)=B+BAC+C.本质为两个三角形外角和定
8、理证明.【题型4 飞镖模型】【例4】(2023春江苏镇江八年级统考期中)在社会实践手工课上,小茗同学设计了一个形状如图所示的零件,如果A=52,B=25,C=30,D=35,E=72,那么F的度数是()A72B70C65D60【变式4-1】(2023春八年级期末)如图,已知在ABC中,A=40,现将一块直角三角板放在ABC上,使三角板的两条直角边分别经过点B,C,直角顶点D落在ABC的内部,则ABD+ACD=()A90B60C50D40【变式4-2】(2023全国八年级假期作业)如图所示,已知四边形ABDC,求证BDC=A+B+C【变式4-3】(2023春福建南平八年级统考期中)如图,若EOC
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-832006.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
