分享
分享赚钱 收藏 举报 版权申诉 / 10

类型专题31 运用构造法研究函数的性质(教师版).docx

  • 上传人:a****
  • 文档编号:834774
  • 上传时间:2025-12-16
  • 格式:DOCX
  • 页数:10
  • 大小:468.03KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题31 运用构造法研究函数的性质教师版 专题 31 运用 构造 研究 函数 性质 教师版
    资源描述:

    1、专题31 运用构造法研究函数的性质一、题型选讲题型一 、构造函数研究函数的单调性例1、【2020年高考全国I卷理数】若,则ABCD【答案】B【解析】设,则为增函数,因为所以,所以,所以.,当时,此时,有当时,此时,有,所以C、D错误.故选:B变式1、(2020届山东师范大学附中高三月考)已知偶函数的定义域为,其导函数为,当时,有成立,则关于x的不等式的解集为( )ABCD【答案】B【解析】根据题意设,则,又当时,则有,所以在上单调递减,又在上是偶函数,所以,所以是偶函数,所以,又为偶函数,且在上为减函数,且定义域为,则有,解得或,即不等式的解集为,故选:B.变式2、(2020届山东实验中学高三

    2、上期中)已知定义在上的函数满足,且当时,有,则不等式的解集是( )ABCD【答案】A【解析】根据题意,设,则,则有,即有,故函数的图象关于对称,则有,当时,又由当时,即当时,即函数在区间为增函数,由可得,即,函数的图象关于对称,函数在区间为增函数,由可得,即,此时不存在,故选:题型二、构造函数研究函数的零点等问题例2、【2020年高考天津】已知函数若函数恰有4个零点,则的取值范围是A BC D【答案】D【解析】注意到,所以要使恰有4个零点,只需方程恰有3个实根即可,令,即与的图象有个不同交点.因为,当时,此时,如图1,与有个不同交点,不满足题意;当时,如图2,此时与恒有个不同交点,满足题意;当

    3、时,如图3,当与相切时,联立方程得,令得,解得(负值舍去),所以.综上,的取值范围为.故选:D 变式1、(2020届山东省潍坊市高三上学期统考)函数若函数只有一个零点,则可能取的值有( )A2BC0D1【答案】ABC【解析】只有一个零点,函数与函数有一个交点,作函数函数与函数的图象如下, 结合图象可知,当时;函数与函数有一个交点;当时,可得,令可得,所以函数在时,直线与相切,可得.综合得:或.故选:ABC.变式2、【2018年高考全国卷理数】已知函数若g(x)存在2个零点,则a的取值范围是A1,0) B0,+) C1,+) D1,+)【答案】C【解析】画出函数的图象,在y轴右侧的图象去掉,再画

    4、出直线,之后上下移动,可以发现当直线过点(0,1)时,直线与函数图象有两个交点,并且向下可以无限移动,都可以保证直线与函数的图象有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即.故选C题型三、构造函数证明不等式例3、(2019南通、泰州、扬州一调)已知函数f(x)lnx(aR) 设f(x)的导函数为f(x),若f(x)有两个不相同的零点x1,x2.证明:x1f(x1)x2f(x2)2lna2.【解析】 设px1f(x1)x2f(x2)112. 又则p2ln(x1x2)下面证明x1x2a2.不妨设x1x2,由知0x1aa2,即证x1.因为x1,(0,a),f(x)在(0,a)上为减

    5、函数,所以只要证ff(x1)又f(x1)f(x2)0,即证ff(x2)(14分)设函数F(x)ff(x)2lnx2lna(xa)所以F(x)0,所以F(x)在(a,)为增函数所以F(x2)F(a)0,所以ff(x2)成立从而x1x2a2成立所以p2ln(x1x2)2lna2,即x1f(x1)x2f(x2)2lna2成立(16分)例5、(2017苏州期末)已知函数f(x)(lnxk1)x(kR) 若x1x2,且f(x1)f(x2),证明:x1x2e2k.【解析】 因为f(x)lnxk,所以f(x)在(0,ek上单调递减,在ek,)上单调递增不妨设0x1ekx2.要证x1x2e2k,只要证x2.因

    6、为f(x)在ek,)上单调递增,所以只要证f(x1)f(x2)f,即要证(lnx1k1)x1(klnx11)令t2(klnx1)0,只要证(t2)ett20.设H(t)(t2)ett2,则只要证H(t)0对t0恒成立H(t)(t1)et1,H(t)tet0对t0恒成立所以H(t)在(0,)上单调递增,H(t)H(0)0.所以H(t)在(0,)上单调递增,H(t)H(0)0.综上所述,x1x2e2k.二、达标训练1、【2020年高考全国卷理数】若2x2y0Bln(yx+1)0Dln|xy|0【答案】A【解析】由得:,令,为上的增函数,为上的减函数,为上的增函数,则A正确,B错误;与的大小不确定,

    7、故CD无法确定.故选:A2、【2020年高考浙江】已知a,bR且ab0,对于任意x0均有(xa)(xb)(x2ab)0,则Aa0Cb0【答案】C【解析】因为,所以且,设,则零点为当时,则,要使,必有,且,即,且,所以;当时,则,要使,必有.综上一定有.故选:C3、(2020全国高三专题练习(文)函数,若方程有且只有两个不相等的实数根,则实数的取值范围是 ( )ABCD【答案】A【解析】令,画出与的图象,平移直线,当直线经过时只有一个交点,此时,向右平移,不再符合条件,故故选:A4、(2020届山东实验中学高三上期中)设定义在上的函数满足,且当时,.己知存在,且为函数(为自然对数的底数)的一个零

    8、点,则实数的取值可能是( )ABCD【答案】BCD【解析】令函数,因为,为奇函数,当时,在上单调递减,在上单调递减存在,得,即,;,为函数的一个零点;当时,函数在时单调递减,由选项知,取,又,要使在时有一个零点,只需使,解得,的取值范围为, 故选:5、(2020届山东省滨州市高三上期末)已知定义在上的函数的导函数为,且,则下列判断中正确的是( )ABCD【答案】CD【解析】令,则,因为,所以在上恒成立,因此函数在上单调递减,因此,即,即,故A错;又,所以,所以在上恒成立,因为,所以,故B错;又,所以,即,故C正确;又,所以,即,故D正确;故选:CD.6、(2020浙江学军中学高三3月月考)已知函数,若函数有9个零点,则实数k的取值范围是( )ABCD【答案】A【解析】由题意,函数有9个零点,可转化为与有9个不同交点.因当有,所以在上是周期函数,又当时,有,所以在上的图象如图所示要使与有9个不同交点,则只需夹在与之间即可,所以,解得或.故选:A.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题31 运用构造法研究函数的性质(教师版).docx
    链接地址:https://www.ketangku.com/wenku/file-834774.html
    相关资源 更多
  • 人教版一年级下学期期末质量监测数学试题及参考答案【预热题】.docx人教版一年级下学期期末质量监测数学试题及参考答案【预热题】.docx
  • 人教版一年级下学期期末质量监测数学试题及参考答案【突破训练】.docx人教版一年级下学期期末质量监测数学试题及参考答案【突破训练】.docx
  • 人教版一年级下学期期末质量监测数学试题及参考答案【夺分金卷】.docx人教版一年级下学期期末质量监测数学试题及参考答案【夺分金卷】.docx
  • 人教版一年级下学期期末质量监测数学试题及参考答案【典型题】.docx人教版一年级下学期期末质量监测数学试题及参考答案【典型题】.docx
  • 人教版一年级下学期期末质量监测数学试题及参考答案【a卷】.docx人教版一年级下学期期末质量监测数学试题及参考答案【a卷】.docx
  • 人教版一年级下学期期末质量监测数学试题及免费答案.docx人教版一年级下学期期末质量监测数学试题及免费答案.docx
  • 人教版一年级下学期期末质量监测数学试题及下载答案.docx人教版一年级下学期期末质量监测数学试题及下载答案.docx
  • 人教版一年级下学期期末质量监测数学试题及一套完整答案.docx人教版一年级下学期期末质量监测数学试题及一套完整答案.docx
  • 人教版一年级下学期期末质量监测数学试题及1套参考答案.docx人教版一年级下学期期末质量监测数学试题及1套参考答案.docx
  • 人教版一年级下学期期末质量监测数学试题加答案下载.docx人教版一年级下学期期末质量监测数学试题加答案下载.docx
  • 人教版一年级下学期期末质量监测数学试题免费答案.docx人教版一年级下学期期末质量监测数学试题免费答案.docx
  • 人教版一年级下学期期末质量监测数学试题【重点班】.docx人教版一年级下学期期末质量监测数学试题【重点班】.docx
  • 人教版一年级下学期期末质量监测数学试题【重点】.docx人教版一年级下学期期末质量监测数学试题【重点】.docx
  • 人教版一年级下学期期末质量监测数学试题【综合题】.docx人教版一年级下学期期末质量监测数学试题【综合题】.docx
  • 人教版一年级下学期期末质量监测数学试题【精选题】.docx人教版一年级下学期期末质量监测数学试题【精选题】.docx
  • 人教版一年级下学期期末质量监测数学试题【精华版】.docx人教版一年级下学期期末质量监测数学试题【精华版】.docx
  • 人教版一年级下学期期末质量监测数学试题【有一套】.docx人教版一年级下学期期末质量监测数学试题【有一套】.docx
  • 人教版一年级下学期期末质量监测数学试题【最新】.docx人教版一年级下学期期末质量监测数学试题【最新】.docx
  • 人教版一年级下学期期末质量监测数学试题【巩固】.docx人教版一年级下学期期末质量监测数学试题【巩固】.docx
  • 人教版一年级下学期期末质量监测数学试题【实验班】.docx人教版一年级下学期期末质量监测数学试题【实验班】.docx
  • 人教版一年级下学期期末质量监测数学试题【完整版】.docx人教版一年级下学期期末质量监测数学试题【完整版】.docx
  • 人教版一年级下学期期末质量监测数学试题【夺冠系列】.docx人教版一年级下学期期末质量监测数学试题【夺冠系列】.docx
  • 人教版一年级下学期期末质量监测数学试题【夺冠】.docx人教版一年级下学期期末质量监测数学试题【夺冠】.docx
  • 人教版一年级下学期期末质量监测数学试题【基础题】.docx人教版一年级下学期期末质量监测数学试题【基础题】.docx
  • 人教版一年级下学期期末质量监测数学试题【培优b卷】.docx人教版一年级下学期期末质量监测数学试题【培优b卷】.docx
  • 人教版一年级下学期期末质量监测数学试题【培优a卷】.docx人教版一年级下学期期末质量监测数学试题【培优a卷】.docx
  • 人教版一年级下学期期末质量监测数学试题【名校卷】.docx人教版一年级下学期期末质量监测数学试题【名校卷】.docx
  • 人教版一年级下学期期末质量监测数学试题【名师系列】.docx人教版一年级下学期期末质量监测数学试题【名师系列】.docx
  • 人教版一年级下学期期末质量监测数学试题【各地真题】.docx人教版一年级下学期期末质量监测数学试题【各地真题】.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1