专题8.8几何法求线面角、二面角及距离(原卷版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题8.8 几何法求线面角、二面角及距离原卷版 专题 8.8 几何 法求线面角 二面角 距离 原卷版
- 资源描述:
-
1、8.8 几何法求线面角、二面角及距离知识点总结利用几何法求线面角、二面角、距离的难点在于找到所求的角或距离,相对于向量法,几何法运算简单、不易出错.知识点1:线与线的夹角(1)位置关系的分类:(2)异面直线所成的角定义:设是两条异面直线,经过空间任一点作直线,把与所成的锐角(或直角)叫做异面直线与所成的角(或夹角)范围:求法:平移法:将异面直线平移到同一平面内,放在同一三角形内解三角形知识点2:线与面的夹角定义:平面上的一条斜线与它在平面的射影所成的锐角即为斜线与平面的线面角范围:求法:常规法:过平面外一点做平面,交平面于点;连接,则即为直线与平面的夹角接下来在中解三角形即(其中即点到面的距离
2、,可以采用等体积法求,斜线长即为线段的长度);知识点3:二面角(1)二面角定义:从一条直线出发的两个半平面所组成的图形称为二面角,这条直线称为二面角的棱,这两个平面称为二面角的面(二面角或者是二面角)(2)二面角的平面角的概念:平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角就叫做该二面角的平面角;范围(3)二面角的求法法一:定义法在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角,如图在二面角的棱上任取一点,以为垂足,分别在半平面和内作垂直于棱的射线和,则射线和所成的角称为二面角的平面角(当然两条垂线的垂足点可
3、以不相同,那求二面角就相当于求两条异面直线的夹角即可) 法二:三垂线法在面或面内找一合适的点,作于,过作于,则为斜线在面内的射影,为二面角的平面角如图1,具体步骤:找点做面的垂线;即过点,作于;过点(与中是同一个点)做交线的垂线;即过作于,连接;计算:为二面角的平面角,在中解三角形 图1 图2 图3法三:射影面积法凡二面角的图形中含有可求原图形面积和该图形在另一个半平面上的射影图形面积的都可利用射影面积公式(,如图2)求出二面角的大小;法四:补棱法当构成二面角的两个半平面没有明确交线时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法与三垂线法解题当二平面没有明确的
4、交线时,也可直接用法三的摄影面积法解题法五:垂面法由二面角的平面角的定义可知两个面的公垂面与棱垂直,因此公垂面与两个面的交线所成的角,就是二面角的平面角例如:过二面角内一点作于,作于,面交棱于点,则就是二面角的平面角如图3此法实际应用中的比较少,此处就不一一举例分析了知识点4:空间中的距离求点到面的距离转化为三棱锥等体积法求解典型例题分析考向一 几何法求线面角例1 (2023杭州质检)在三棱柱ABCA1B1C1中,各棱长都相等,侧棱垂直于底面,点D是BC1与B1C的交点,则AD与平面BB1C1C所成角的正弦值是()A. B. C. D.感悟提升求线面角的三个步骤:一作(找)角,二证明,三计算,
5、其中作(找)角是关键,先找出斜线在平面上的射影,关键是作垂线,找垂足,然后把线面角转化到三角形中求解.训练1 (2023湖州模拟)如图,已知正四棱锥PABCD底面边长为2,侧棱长为4,M为侧棱PC的中点,则直线BM与底面ABCD所成角的正弦值为()A. B. C. D.考向二 几何法求二面角例2 如图所示,在三棱锥SABC中,SBC,ABC都是等边三角形,且BC2,SA,则二面角SBCA的大小为()A.30 B.45 C.60 D.75感悟提升作二面角的平面角的方法:作二面角的平面角可以用定义法,也可以用垂面法,即在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确
6、定的平面和二面角的棱垂直,由此可得二面角的平面角.训练2 我国古代数学名著九章算术中,将底面是直角三角形的直三棱柱称为“堑堵”.在如图所示的“堑堵”中,ACCBCC1,则二面角C1ABC的正切值为()A.1 B.2 C. D.考向三 几何法求距离角度1点线距例3 如图,在四棱锥PABCD中,PB平面ABCD,PBAB2BC4,ABBC,则点C到直线PA的距离为()A.2 B.2 C. D.4角度2点面距例4 如图所示,在长方体ABCDA1B1C1D1中,ADAA12,AB4,点E是棱AB的中点,则点E到平面ACD1的距离为()A.1 B. C. D.感悟提升1.求点线距一般要作出这个距离,然后
7、利用直角三角形求解,或利用等面积法求解.2.求点面距时,若能够确定过点与平面垂直的直线,即作出这个距离,可根据条件求解,若不易作出点面距,可借助于等体积法求解.基础题型训练一、单选题1在中国古代数学著作九章算术中记载了一种称为“曲池”的几何体,该几何体的上、下底面平行,且均为扇环形(扇环是指圆环被扇形截的部分),现有一个如图所示的曲池,它的高为2,均与曲池的底面垂直,底面扇环对应的两个圆的半径分别为1和2,对应的圆心角为90,则图中异面直线与所成角的余弦值为()ABCD2一个正六棱锥,其侧面和底面的夹角大小为,则该正六棱锥的高和底面边长之比为()ABCD3在正方体中,是的中点,则异面直线与的夹
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
