分享
分享赚钱 收藏 举报 版权申诉 / 34

类型人教版九年级数学上册第二十三章旋转定向训练试卷(含答案解析).docx

  • 上传人:a****
  • 文档编号:869375
  • 上传时间:2025-12-17
  • 格式:DOCX
  • 页数:34
  • 大小:1.52MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    人教版 九年级 数学 上册 第二十三 旋转 定向 训练 试卷 答案 解析
    资源描述:

    1、人教版九年级数学上册第二十三章旋转定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在菱形中,顶点,在坐标轴上,且,分别以点,为圆心,以的长为半径作弧,两弧交于点,连接,将菱形与构成的图形绕点

    2、逆时针旋转,每次旋转45,则第2022次旋转结束时,点的坐标为()ABCD2、如图,平面直角坐标系中,点在第一象限,点在轴的正半轴上,将绕点逆时针旋转,点的对应点的坐标是()ABCD3、将按如图方式放在平面直角坐标系中,其中,顶点的坐标为,将绕原点逆时针旋转,每次旋转60,则第2023次旋转结束时,点对应点的坐标为()ABCD4、如图,RtABC中,C=90,A=30,AB=20,点P是AC边上的一个动点,将线段BP绕点B顺时针旋转60得到线段BQ,连接CQ则在点P运动过程中,线段CQ的最小值为()A4B5C10D55、如图,OAB中,AOB=60,OA=4,点B的坐标为(6,0),将OAB绕

    3、点A逆时针旋转得到CAD,当点O的对应点C落在OB上时,点D的坐标为()A(7,3)B(7,5)C(5,5)D(5,3)6、2022年新年贺词中提到“人不负青山,青山定不负人”,下列四个有关环保的图形中,是轴对称图形,但不是中心对称图形的是()ABCD7、如图,将RtABC绕直角顶点C顺时针旋转90,得到ABC,连接AA,若1=25,则BAA的度数是()A70B65C60D558、如图,已知正方形的边长为3,点E是边上一动点,连接,将绕点E顺时针旋转到,连接,则当之和取最小值时,的周长为()ABCD9、如图,AOB中,OA4,OB6,AB2,将AOB绕原点O旋转90,则旋转后点A的对应点A的坐

    4、标是()A(4,2)或(4,2)B(2,4)或(2,4)C(2,2)或(2,2)D(2,2)或(2,2)10、如图,中,若将绕点逆时针旋转得到,连接,则在点运动过程中,线段的最小值为()A1BCD2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,将点A先向右平移4个单位,再向下平移6个单位得到点B,如果点A和点B关于原点对称,那么点A的坐标是_2、如图,在菱形OBCD中,OB1,相邻两内角之比为1:2,将菱形OBCD绕顶点O顺时针旋转90,得到菱形OBCD视为一次旋转,则菱形旋转45次后点C的坐标为_3、如图所示的图案由三个叶片组成,绕点O旋转120

    5、后可以和自身重合,若每个叶片的面积为4cm2,AOB=120,则图中阴影部分的面积为_4、如图,点E是正方形ABCD边BC上一点,连接AE,将ABE绕着点A逆时针旋转到AFG的位置(点F在正方形ABCD内部),连接DG若AB10,BE6,则CH_ 5、如图,矩形ABCD中,AB=2,BC=1,将矩形ABCD绕顶点C顺时针旋转90,得到矩形EFCG,连接AE,取AE的中点H,连接DH,则_三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC中,ABAC,P是 ABC内的一点,且APBAPC,求证:PBPC(反证法)2、如图,将矩形ABCD绕点A顺时针旋转得到矩形AEFG,其中点B的对

    6、应点E恰好落在边CD上,连结BG交AE于点G,连结BE(1)求证:BE平分AEC;(2)求证:BH=HG3、如图,在由边长为1个单位长度的小正方形组成的网格中,ABC的三个顶点分别是格点(1)将ABC以点C为旋转中心旋转180,画出旋转后对应的;(2)将ABC先左移2个单位,再下移4个单位,画出平移后的4、ABC在坐标系中的位置如图1所示,其中每个小正方形的边长为1个单位长度(1)按要求作图:画出ABC关于原点O的中心对称图形A1B1C1;画出将ABC绕点A逆时针旋转90得到AB2C2;(2)如图2,已知AOB,OAOB,点E在OB边上,四边形AEBF是矩形请你只用无刻度的直尺在图中画出AOB

    7、的平分线(请保留画图痕迹)5、在中,直线MN经过点C且于D,于E(1)当直线MN绕点C旋转到图1的位置时,求证:;(2)当直线MN烧点C旋转到图2的位置时,求证:;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明-参考答案-一、单选题1、D【解析】【分析】将菱形与构成的图形绕点逆时针旋转,每次旋转45,即点E,绕点O,逆时针旋转,每次旋转45,所以点E每8次一循环,又因为20228=252.6,所以E2022坐标与E6坐标相同,求出点E6的坐标即可求解【详解】解:如图,将菱形与构成的图形绕点逆时针旋转,每次旋转45,即点E,绕点O

    8、,逆时针旋转,每次旋转45,由图可得点E每8次一循环,20228=252.6,E2022坐标与E6坐标相同,A(0,1),OA=1,菱形,ABO=ADO=30,AD=AB=2OA=2,OD=,ADE是等边三角形,ADE=60,DE=AD=2,ODE=90,DOE+DEO=90,过点E6作E6Fx轴于F,OFE6=ODE=90,E6OE=90,DOE+E6OF=90,DEO=E6OF,OE=OE6,ODEE6FO(AAS),OF=DE=2,E6F=OD=,E6(2,-),E2022(2,-),故选:D【考点】本题考查图形变换规律,菱形的性质,全等三角形的判定与性质,直角三角形的性质,勾股定理,本

    9、题属旋转规律型,坐标变换规律型问题,找出图形变换规律,即得出点E变换规律是解题的关键2、B【解析】【分析】如图,作轴于解直角三角形求出,即可【详解】解:如图,作轴于 由题意:,故选:B【考点】本题考查坐标与图形变化旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题3、A【解析】【分析】根据旋转性质,可知6次旋转为1个循环,故先需要求出前6次循环对应的A点坐标即可,利用全等三角形性质求出第一次旋转对应的A点坐标,之后第2次旋转,根据图形位置以及长,即可求出,第3、4、5次分别利用关于原点中心对称,即可求出,最后一次和A点重合,再判断第2023次属于循环中的第1次,最

    10、后即可得出答案【详解】解:由题意可知:6次旋转为1个循环,故只需要求出前6次循环对应的A点坐标即可第一次旋转时:过点作轴的垂线,垂足为,如下图所示:由的坐标为可知:,在中, 由旋转性质可知:, , 在与中: , 此时点对应坐标为,当第二次旋转时,如下图所示:此时A点对应点的坐标为当第3次旋转时,第3次的点A对应点与A点中心对称,故坐标为当第4次旋转时,第4次的点A对应点与第1次旋转的A点对应点中心对称,故坐标为当第5次旋转时,第5次的点A对应点与第2次旋转的A点对应点中心对称,故坐标为第6次旋转时,与A点重合故前6次旋转,点A对应点的坐标分别为:、由于,故第2023次旋转时,A点的对应点为故选

    11、:A【考点】本题主要是考查了旋转性质、中心对称求点坐标、三角形全等以及点的坐标特征,熟练利用条件证明全等三角形,;通过旋转和中心对称求解对应点坐标,是求解该题的关键4、D【解析】【分析】将RtABC绕点B顺时针旋转60得到,再设线段的中点为M,并连接CM根据线段BP的旋转方式确定点Q在线段上运动,再根据垂线段最短确定当Q与点M重合时,CQ取得最小值为CM根据C=90,A=30,AB=20求出BC的长度,再根据旋转的性质求出和的长度,根据线段的和差关系确定点C是线段的中点,进而确定CM是的中位线,再根据三角形中位线定理即可求出CM的长度【详解】解:如下图所示,将RtABC绕点B顺时针旋转60得到

    12、,再设线段的中点为M,并连接CM点P是AC边上的一个动点,线段BP绕点B顺时针旋转60得到线段BQ,点Q在线段上运动当,即点Q与点M重合时,线段CQ取得最小值为CMC=90,A=30,AB=20,BC=10RtABC绕点B顺时针旋转60得到,=BC=10,点C是线段中点点M是线段的中点,CM是的中位线故选:D【考点】本题考查旋转的性质,直角三角形30所对的直角边是斜边的一半,垂线段最短,三角形中位线定理,综合应用这些知识点是解题关键5、A【解析】【分析】如图,过点D作DEx轴于点E证明AOC是等边三角形,解直角三角形求出DE,CE,可得结论【详解】解:如图,过点D作DEx轴于点EB(6,0),

    13、OB=6,由旋转的性质可知AO=AC=4,OB=CD=6,ACD=AOB=60,AOC=60,AOC是等边三角形,OC=OA=4,ACO=60,DCE=60,CE=CD=3,DE=3,OE=OC+CE=4+3=7,D(7,3),故选:A【考点】本题考查了旋转变换,含30度角的直角三角形的性质,勾股定理,等边三角形的判定和性质等知识,解题的关键是掌握旋转变换的性质6、D【解析】【分析】轴对称图形:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形中心对称图形:在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的

    14、形状关于这个点成中心对称根据轴对称图形、和中心对称图形的概念,即可完成解题【详解】解:根据轴对称和中心对称的概念,选项A、B、C、D中,是轴对称图形的是B、D,是中心对称图形的是B故选:D【考点】本题主要轴对称图形、中心对称图形的概念,熟练掌握知识点是解答本题的关键7、B【解析】【分析】根据旋转的性质可得AC=AC,然后判断出ACA是等腰直角三角形,根据等腰直角三角形的性质可得CAA=45,再根据三角形的内角和定理可得结果【详解】RtABC绕直角顶点C顺时针旋转90得到ABC,AC=AC,ACA是等腰直角三角形,CAA=45,CAB=20=BACBAA=180-70-45=65,故选:B【考点

    15、】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键8、A【解析】【分析】连接 BF,过点F作FGAB交AB延长线于点G,通过证明AEDGFE(AAS),确定F点在BF的射线上运动;作点C关于BF的对称点C,由三角形全等得到CBF=45,从而确定C点在AB的延长线上;当D、F、C三点共线时,DF+CF=DC最小,在RtADC中,AD=3,AC=6,求出DC=3即可【详解】解:连接 BF,过点F作FGAB交AB延长线于点G,将ED绕点E顺时针旋转90到EF,EFDE,且EF=DE,AEDGFE(AAS),FG=A

    16、E,F点在BF的射线上运动,作点C关于BF的对称点C,EG=DA,FG=AE,AE=BG,BG=FG,FBG=45,CBF=45,BF是CBC的角平分线,即F点在CBC的角平分线上运动,C点在AB的延长线上,当D、F、C三点共线时,DF+CF=DC最小,在RtADC中,AD=3,AC=6,DC=3,DF+CF的最小值为3,此时的周长为故选:A【考点】本题考查了旋转的性质,正方形的性质,轴对称求最短路径;能够将线段的和通过轴对称转化为共线线段是解题的关键9、C【解析】【分析】先求出点A的坐标,再根据旋转变换中,坐标的变换特征求解;或根据题意画出图形旋转后的位置,根据旋转的性质确定对应点A的坐标【

    17、详解】过点A作于点C在RtAOC中, 在RtABC中, OA4,OB6,AB2,点A的坐标是根据题意画出图形旋转后的位置,如图,将AOB绕原点O顺时针旋转90时,点A的对应点A的坐标为;将AOB绕原点O逆时针旋转90时,点A的对应点A的坐标为故选:C【考点】本题考查了解直角三角形、旋转中点的坐标变换特征及旋转的性质(a,b)绕原点顺时针旋转90得到的坐标为(b,-a),绕原点逆时针旋转90得到的坐标为(b,a)10、B【解析】【分析】在AB上截取AQ=AO=1,利用SAS证明AQDAOE,推出QD=OE,当QDBC时,QD的值最小,即线段OE有最小值,利用勾股定理即可求解【详解】如图,在AB上

    18、截取AQ=AO=1,连接DQ,将AD绕A点逆时针旋转90得到AE,BAC=DAE=90,BAC-DAC =DAE-DAC,即BAD=CAE,在AQD和AOE中,AQDAOE(SAS),QD=OE,D点在线段BC上运动,当QDBC时,QD的值最小,即线段OE有最小值,ABC是等腰直角三角形,B=45,QDBC,QBD是等腰直角三角形,AB=AC=3,AO=1,QB=2,由勾股定理得QD=QB=,线段OE有最小值为,故选:B【考点】本题考查了勾股定理,等腰直角三角形的判定和性质,全等三角形的判定和性质,旋转的性质,熟记各图形的性质并准确识图是解题的关键二、填空题1、【解析】【分析】先按题目要求对A

    19、、B点进行平移,再根据原点对称的特征:横纵坐标互为相反数进行列方程,求解【详解】设,向右平移4个单位,再向下平移6个单位得到 A、B关于原点对称,解得,故答案为:【考点】本题考查点的平移和原点对称的性质,掌握这些是解题关键2、(,)【解析】【分析】先求出菱形的内角度数,过作轴于点,在中,利用特殊角度数及边长求解和长,则点坐标可求,由,得出菱形4次旋转一周,4次一个循环,由,得出菱形旋转45次后点与点重合,即可得出答案【详解】解:四边形OBCD是菱形,相邻两内角之比为1:2,CBOD60,DOBC120根据旋转性质可得OBC120,CBH60过C作CHy轴于点H,如图所示:在RtCBH中,BC1

    20、,坐标为,360904,菱形4次旋转一周,4次一个循环,454111,菱形旋转45次后点与点重合,坐标为,;故答案为:,【考点】本题主要考查了菱形的性质,旋转的性质,以及坐标与图形变化,解决此类问题要熟知旋转后的不变量,得出规律是解题的关键3、4 cm2【解析】【分析】根据旋转的性质和图形的特点解答【详解】每个叶片的面积为4cm2,因而图形的面积是12cm2图案绕点O旋转120后可以和自身重合,AOB为120,图形中阴影部分的面积是图形的面积的,因而图中阴影部分的面积之和为4cm2故答案为4cm2【考点】本题考查了图形的旋转与重合,理解旋转对称图形的定义是解决本题的关键注:旋转对称图形的概念:

    21、把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角4、【解析】【分析】由“HL”可证,可得,由“AAS”可证,可得,可得,再由勾股定理可求AP、FN、DH,即可求解【详解】如图,连接AH,过点F作FNCD于点N,FPAD于点P,将ABE绕着点A逆时针旋转到AFG的位置,四边形ABCD是正方形,又,FNCD,FPAD,四边形PDNF是矩形,故答案为:【考点】本题考查了旋转的性质,正方形的性质、矩形的判定与性质,全等三角形的判定和性质及勾股定理,熟练掌握知识点是解题的关键5、【解析】【分析】根据题意构造并证明,通过全等得到

    22、,再结合矩形的性质、旋转的性质,及可求解;【详解】如图,延长DH交EF于点k,H是的中点又则故答案为:【考点】本题主要考查了矩形的性质、三角形的全等证明,掌握相关知识并结合旋转的性质正确构造全等三角形是解题的关键三、解答题1、见解析【解析】【分析】假设PBPC,从假设出发推出与已知相矛盾,得到假设不成立,则结论成立【详解】证明:假设PBPC,如图,把ABP绕点A逆时针旋转,使点B与点C重合,得到ADC,连接PD,;,即,这与APBAPC相矛盾,PBPC不成立,PBPC【考点】此题主要考查了反证法的应用,解此题关键要懂得反证法的意义及步骤2、 (1)见详解(2)见详解【解析】【分析】(1)根据矩

    23、形ABCD绕点A顺时针旋转得到矩形AEFG,得出AB=AE,可得ABE=AEB,根据ABCD,得出CEB=ABE=AEB即可;(2)过B作BMAE于M,先证CEBMEB(AAS),再证BMHGAH(AAS)即可(1)证明:矩形ABCD绕点A顺时针旋转得到矩形AEFG,AB=AE,ABE=AEB,矩形ABCD,ABCD,CEB=ABE=AEB,BE平分AEC;(2)证明:过B作BMAE于M,四边形ABCD为矩形,C=90BC=AD,BME=C=90,在CEB和MEB中,CEBMEB(AAS),BC=BM,矩形ABCD绕点A顺时针旋转得到矩形AEFG,AD=AG,HAG=90,BM=GA,在BMH

    24、和GAH中,BMHGAH(AAS),BH=GH【考点】本题考查矩形性质,矩形旋转性质,等腰三角形判定与性质,平行线性质,角平分线判定,三角形全等判定与性质,掌握矩形性质,矩形旋转性质,等腰三角形判定与性质,平行线性质,角平分线判定,三角形全等判定与性质是解题关键3、 (1)见解析(2)见解析【解析】【分析】(1)根据题意找到关于点C的对称点,顺次连接,即为所求;(2)根据题意将先左移2个单位,再下移4个单位,得到,顺次连接,则即为所求(1)如图,为所作(2)如图,为所作【考点】本题考查了画旋转图形,平移,掌握旋转的性质与平移的性质是解题的关键4、 (1)作图见解析,作图见解析(2)作图见解析【

    25、解析】【分析】(1)如图1,根据中心对称图形的性质可知、的点坐标,在坐标系中描点,然后依次连接即可;如图1,根据旋转的性质,为旋转中心,作图即可;(2)如图2,根据矩形的性质,连接对角线,根据等腰三角形三线合一的性质,连接与矩形对角线的交点即可(1)解:如图1中,A1B1C1即为所求作如图1中,AB2C2即为所求作(2)解:如图2,射线OK即为所求作【考点】本题考查了中心对称图形的性质与作图,旋转的性质,矩形的性质,等腰三角形的性质等知识解题的关键在于对知识的熟练掌握5、 (1)证明见解析;证明见解析(2)证明见解析(3)(或者对其恒等变形得到,),证明见解析【解析】【分析】(1)根据,得出,再根据即可判定;根据全等三角形的对应边相等,即可得出,进而得到;(2)先根据,得到,进而得出,再根据即可判定,进而得到,最后得出;(3)运用(2)中的方法即可得出,之间的等量关系是:或恒等变形的其他形式(1)解:,在和中,;,;(2)证明:,在和中,;,;(3)证明:当旋转到题图(3)的位置时,所满足的等量关系是:或或理由如下:,在和中,(或者对其恒等变形得到或)【考点】本题属于三角形综合题,主要考查了全等三角形的判定与性质的综合应用,解题时注意:全等三角形的对应边相等,同角的余角相等,解决问题的关键是根据线段的和差关系进行推导,得出结论

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教版九年级数学上册第二十三章旋转定向训练试卷(含答案解析).docx
    链接地址:https://www.ketangku.com/wenku/file-869375.html
    相关资源 更多
  • 小升初基础知识填空题专项练习及答案【全国通用】.docx小升初基础知识填空题专项练习及答案【全国通用】.docx
  • 小升初基础知识填空题专项练习及答案【全优】.docx小升初基础知识填空题专项练习及答案【全优】.docx
  • 2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题三 第1讲 三角函数的图象与性质(共37张PPT).ppt2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题三 第1讲 三角函数的图象与性质(共37张PPT).ppt
  • 小升初基础知识填空题专项练习及完整答案(考点梳理).docx小升初基础知识填空题专项练习及完整答案(考点梳理).docx
  • 2014年高考数学(理科人教版)二轮专题整合突破复习课件:第二讲 填空题技法指导(共18张PPT).ppt2014年高考数学(理科人教版)二轮专题整合突破复习课件:第二讲 填空题技法指导(共18张PPT).ppt
  • 小升初基础知识填空题专项练习及完整答案(网校专用).docx小升初基础知识填空题专项练习及完整答案(网校专用).docx
  • 2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题五 第2讲 点、直线、平面之间的位置关系(共45张PPT).ppt2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题五 第2讲 点、直线、平面之间的位置关系(共45张PPT).ppt
  • 小升初基础知识填空题专项练习及完整答案(精品).docx小升初基础知识填空题专项练习及完整答案(精品).docx
  • 2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题九 第2讲 数形结合思想(共34张PPT).ppt2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题九 第2讲 数形结合思想(共34张PPT).ppt
  • 小升初基础知识填空题专项练习及完整答案(有一套).docx小升初基础知识填空题专项练习及完整答案(有一套).docx
  • 2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题三 第2讲 三角变换、平面向量与解三角形(共34张PPT).ppt2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题三 第2讲 三角变换、平面向量与解三角形(共34张PPT).ppt
  • 2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题七 第1讲 计数原理(共29张PPT).ppt2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题七 第1讲 计数原理(共29张PPT).ppt
  • 小升初基础知识填空题专项练习及完整答案(易错题).docx小升初基础知识填空题专项练习及完整答案(易错题).docx
  • 2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题一 第3讲 复数、框图、合情推理(共30张PPT).ppt2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题一 第3讲 复数、框图、合情推理(共30张PPT).ppt
  • 2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题一 第1讲 集合与常用逻辑用语(共32张PPT).ppt2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题一 第1讲 集合与常用逻辑用语(共32张PPT).ppt
  • 小升初基础知识填空题专项练习及完整答案(必刷).docx小升初基础知识填空题专项练习及完整答案(必刷).docx
  • 2014年高考数学(浙江专用 理)二轮专题突破课件:2.ppt2014年高考数学(浙江专用 理)二轮专题突破课件:2.ppt
  • 2014年高考数学(浙江专用 理)二轮专题突破课件:1.ppt2014年高考数学(浙江专用 理)二轮专题突破课件:1.ppt
  • 小升初基础知识填空题专项练习及完整答案(夺冠系列).docx小升初基础知识填空题专项练习及完整答案(夺冠系列).docx
  • 小升初基础知识填空题专项练习及完整答案(名校卷).docx小升初基础知识填空题专项练习及完整答案(名校卷).docx
  • 小升初基础知识填空题专项练习及完整答案(各地真题).docx小升初基础知识填空题专项练习及完整答案(各地真题).docx
  • 小升初基础知识填空题专项练习及完整答案(历年真题).docx小升初基础知识填空题专项练习及完整答案(历年真题).docx
  • 2014年高考数学(新课标理)题型全归纳课件:第九章 直线和圆的方程第4节.ppt2014年高考数学(新课标理)题型全归纳课件:第九章 直线和圆的方程第4节.ppt
  • 小升初基础知识填空题专项练习及完整答案(典优).docx小升初基础知识填空题专项练习及完整答案(典优).docx
  • 小升初基础知识填空题专项练习及完整答案(全国通用).docx小升初基础知识填空题专项练习及完整答案(全国通用).docx
  • 2014年高考数学(新课标理)题型全归纳课件:第四章 三角函数第3~4节.ppt2014年高考数学(新课标理)题型全归纳课件:第四章 三角函数第3~4节.ppt
  • 2014年高考数学(新课标理)题型全归纳课件:第十六章 选讲内容第2,3节.ppt2014年高考数学(新课标理)题型全归纳课件:第十六章 选讲内容第2,3节.ppt
  • 小升初基础知识填空题专项练习及完整答案【考点梳理】.docx小升初基础知识填空题专项练习及完整答案【考点梳理】.docx
  • 2014年高考数学(新课标理)题型全归纳课件:第十二章 计数原理第2节排列.ppt2014年高考数学(新课标理)题型全归纳课件:第十二章 计数原理第2节排列.ppt
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1